Skip to main content
Log in

Glutamate decarboxylase in developing rat neocortex: Does it correlate with the differentiation of GABAergic neurons and synapses?

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Postnatal development of glutamate decarboxylase was studied in the rat cerebral cortex. Two methods were used: estimation of the enzymatic activity of glutamate decarboxylase in homogenates of developing cortical tissue and visualization of structures containing glutamate decarboxylase-like immunoreactivity. Glutamate decarboxylase-like immunoreactivity appeared first in perikarya and dendrites and only later in axons and axon varicosities. The most rapid increase in the glutamate decarboxylase activity took place during the second postnatal week and this coincided with a rapid increase in the density of axon varicosities containing glutamate decarboxylase-like immunoreactivity but preceded the most rapid phase in the formation of GABAergic synapses by several days. However, there was a change in the characteristics of glutamate decarboxylase which correlated with GABA synaptogenesis: two fractions of glutamate decarboxylase with different sensitivities to the activating effects of Triton X-100 could be distinguished as from about the time when most of the GABAergic synapses are formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Johnston, G. A. R., and Balcar, V. J. 1989 GABA enzymes and transport systems, Pages 1–23, in Bowery, N. G., (ed.) GABA: From Basic Research to Clinical Implications, Pythagora Press, Rome, Italy.

    Google Scholar 

  2. McGeer, P. L., Eccles, Sir J. C., and McGeer, E. G. 1987. Molecular Neurobiology of the Mammalian Brain, Pages 197–234, Plenum Press, New York and London.

    Google Scholar 

  3. Seiler, N., and Lajtha, A. 1987. Functions of GABA in vertebrate organism, Pages 1–56, in Redburn D. A. and Schousboe A., (eds.), Neurotrophic Activity of GABA During Development, Alan R. Liss, New York, U.S.A.

    Google Scholar 

  4. Mugnaini, E., and Oertel, W. H. 1985. Atlas of the distribution of GABAergic neurons and terminals in the rat CNS as revealed by GAD immunohistochemistry. Pages 436–608, in Björklund, A. and Hökfelt, T. (eds.), Handbook of Chemical Neuroanatomy, Vol. 4, Elsevier, Amsterdam Holland.

    Google Scholar 

  5. Schüz, A. 1981. Pränatale Reifung und postnatale Veränderungen in Cortex des Meerschweinchens: Mikroskopische Auswertung eines natürlichen Deprivations Experiments. I. Pränatale Reifung. J. Hirnforschung 22:93–111.

    Google Scholar 

  6. Vrensen, G., De Groot, D., and Nuñez-Cardozo, J. 1977. Postnatal development of neurons and synapses in the visual cortex of rabbits. A quantitative light and electrom microscopic study. Brain Res. Bull. 2:405–416.

    PubMed  Google Scholar 

  7. Wolff, J. R., and Chronwall, B. M. 1982. Axosomatic synapses in the visual cortex of adult rat. A comparison between GABA-accumulating and other neurons. J. Neurocytol. 11:409–425.

    PubMed  Google Scholar 

  8. Wilson, S. H., Schrier, B. K., Farber, J. L., Thompson, E. J., Rosenberg, R. N., Blume, A. J., and Nirenberg, M. V. 1972. Markers for gene expression in cultured cells from the nervous system. J. Biol. Chem. 247:3159–3169.

    PubMed  Google Scholar 

  9. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. 1951. Protein measurements with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  10. Wolff, J. R., Böttcher, H., Zetzsche, T., Oertel, W. E., and Chronwall, B. M. 1984. Development of GABAergic neurons in rat visual cortex, as identified by glutamate decarboxylase-like immunoreactivity. Neurosci. Lett. 47:207–212.

    PubMed  Google Scholar 

  11. Oertel, W. H., Schmechel, D. E., Mugnaini, E., Tappaz, M. L., and Kopin, I. J. 1982. Immunocytochemical localization of glutamate decarboxylase in the rat cerebellum with a new antiserum. Neuroscience 6:2715–2735.

    Google Scholar 

  12. Sternberger, L. A. 1979. Immunochemistry, 2nd edn., John Wiley and Sons, New York, U.S.A.

    Google Scholar 

  13. Adams, J. C. 1981. Heavy metal intensification of DAB base HRP reaction product. J. Histochem. Cytochem. 29:775.

    PubMed  Google Scholar 

  14. Emson, P. C., and Hunt, S. P. 1981. Anatomical chemistry of the cerebral cortex. Pages 325–345, in Schmitt, F. O., Worden, F. G., Adelman, G. and Dennis, S. G., (eds.), The Organization of the Cerebral Cortex. M.I.T. Press, Cambridge, Mass., U.S.A.

    Google Scholar 

  15. Peters, A., and Fairen, A. 1978. Smooth and sparsely-spined stellate cells in the visual cortex of the rat: A study using combined Golgi-electron microscope technique. J. Comp. Neurol. 181:129–172.

    PubMed  Google Scholar 

  16. Ribak, C. E. 1978. Aspinous and sparsely spinous stellate neurons in the visual cortex of rats contain glutamic acid decarboxylase. J. Neurocytol. 7:461–478.

    PubMed  Google Scholar 

  17. McLaughlin, B. J., Wood, J. G., Saito, K., Roberts, E., and Wu, J. Y. 1975. The fine structural localization of glutamic acid decarboxylase in developing axonal processes and pre-synaptic terminals of rodent cerebellum. Brain Res. 85:355–371.

    PubMed  Google Scholar 

  18. Coyle, J. T., and Enna, S. J. 1976. Neurochemical aspect of the ontogenesis of GABAergic neurons in the rat brain. Brain Res. 111:119–133.

    PubMed  Google Scholar 

  19. Johnston, M. V., and Coyle, J. T. 1980. Ontogeny of neurochemical markers for noradrenergic, GABAergic and cholinergic neurons in neocortex lesioned with methylazoxymethanol acetate. J. Neurochem. 34:1429–1441.

    PubMed  Google Scholar 

  20. Patel, A. J., del Vecchio, M., and Atkinson, D. J. 1978. Effect of underntrition on the regional development of transmitter enzymes: glutamate decarboxylase and choline acetyl-transferase. Dev. Neurosci. 1:41–53.

    PubMed  Google Scholar 

  21. Wong, P. T., and McGeer, E. G. 1981. Postnatal changes of GABAergic and glutamatergic parameters. Develop. Brain Res. 1:519–530.

    Google Scholar 

  22. Bähr, S., and Wolff, J. R. 1986. Postnatal development of axosomatic synapses in the rat visual cortex: Morphogenesis and quantitative evaluation. J. Comp. Neurol. 233:405–420.

    Google Scholar 

  23. Balcar, V. J., Dammasch, I. E., and Wolff, J. R. 1983. Is there a non-synaptic component in the K+-stimulated release of GABA in the developing rat cortex? Develop. Brain Res. 10:309–310.

    Google Scholar 

  24. Blue, M. E., and Parnavelas, J. G. 1983. The formation and maturation of synapses in the visual cortex of the rat. II. Quantitative analysis. J. Neurocytol. 12:697–712.

    PubMed  Google Scholar 

  25. Kelly, P., Luttges, M., Johnston, T., and Grove, W. 1974. Maturation-dependent compartmentalization in neural tissue in vitro. Brain Res. 68:267–280.

    PubMed  Google Scholar 

  26. Redburn, D. A., Broome, D., Ferkany, J., and Enna, S. J. 1978. Development of rat brain uptake and calcium-dependent release of GABA. Brain Res. 152:511–519.

    PubMed  Google Scholar 

  27. Hadjian, R. A., and Stewart, J. A. 1977. Immunological quantitation of glutamic acid decarboxylase in developing mouse brain. J. Neurochem. 28:1249–1258.

    PubMed  Google Scholar 

  28. Blinderman, J. M., Maitre, M., and Mandel, P. 1979. Apoenzyme concentration and turnover number ofL-glutamate decarboxylase in some regions of rat brain. J. Neurochem. 32:245–246.

    PubMed  Google Scholar 

  29. Hedner, T., Iversen, K., and Lundborg, P. 1984. Central GABA mechanisms during postnatal development in the rat: neurochemical characteristics. J. Neural Transmission 59:105–118.

    Google Scholar 

  30. Mourek, J., Agrawal, H. C., Davis, J. M., and Himwich, W. A. 1970. The effects of short-term starvation on amino acid content in rat brain during ontogeny. Brain Res. 19:229–237.

    PubMed  Google Scholar 

  31. Döhler, G. and Zink, J. 1984. Trennung freie Aminosäure in Extrakten von Meeresdiatomen mittles Hochleistung Flüssigkeitchromatographie (HPLC). Pages 205–220, in 7. Königstein Chromatographie Tage, Waters, Eschborn, Germany.

    Google Scholar 

  32. Wolff, J. R., Balcar, V. J., Zetzsche, T., Böttcher, H., Schmechel, D. E., and Chronwall, B. M. 1984. Development of GABAergic system in rat visual cortex. Pages 215–239, in Lauder, J. M. and Nelson, P. G. (eds.) Gene Expression and Cell-Cell Interactions in the Developing Nervous System, Plenum Publishing Corporation, New York, U.S.A.

    Google Scholar 

  33. Legay, F., Henry, S., and Tappaz, M. 1987. Evidence for two distinct forms of native glutamic acid decarboxylase in rat brain soluble extract: an immunoblotting study. J. Neurochem. 42:943–950.

    Google Scholar 

  34. Spink, D. C., Wu, S. J., and Martin, D. L. 1987. Kinetically different, multiple forms of glutamate decarboxylase in rat brain. Brain Res. 421:235–244.

    PubMed  Google Scholar 

  35. Chang, Y.-C., and Gottlieb, D. I. 1988. Characterization of proteins purified with monoclonal antibodies to glutamic acid decarboxylase. J. Neurosci. 8:2123–2130.

    PubMed  Google Scholar 

  36. Erlander, M. G., and Tobin, A. J. 1990. The structural and functional heterogeneity of glutamic acid decarboxylase: a review. Neurochem. Res. 16:215–226.

    Google Scholar 

  37. Kaufman, D. L., Houser, C. R., and Tobin, A. J. 1991. Two forms of γ-aminobutyric acid synthetic enzyme glutamate decarboxylase have distinct intraneuronal distribution and cofactor interactions. J. Neurochem. 56:720–723.

    PubMed  Google Scholar 

  38. Balcar, V. J., Damm, S., and Wolff, J. R. 1986. Ontogeny of K+-stimulated relase of [3H]GABA in rat cerebral cortex studied by a simple technique in vitro. Neurochem. Int. 8:573–580.

    Google Scholar 

  39. Kontro, P., and Oja, S. S. 1987. Taurine and GABA release from mouse cerebral cortex slices: potassium stimulation releases more taurine than GABA from developing brain, Dev. Brain Res. 37:277–291.

    Google Scholar 

  40. Oja, S. S. and Kontro, P. 1989. Release of endogeneous taurine and γ-aminobutyric acid from brain slices from the adult and developing mouse. J. Neurochem. 52:1018–1024.

    PubMed  Google Scholar 

  41. Tapia, R., Sandoval, M. E., and Contreras, P. 1975. Evidence for a role of GAD as a regulatory mechanism of cerebral excitability. J. Neurochem. 24:1283–1285.

    PubMed  Google Scholar 

  42. Covarrubias, M., and Tapia, R. 1980. Brain glutamate decarboxylase: properties of its calcium dependent binding to liposomes and kinetics of the bound and free enzyme. J. Neurochem. 34:1682–1688.

    PubMed  Google Scholar 

  43. Angel, I., Fleissner, A., and Seifert, R. 1983. Synaptic vesicles from hog brain-their isolation and the coupling between synthesis and uptake of γ-aminobutyric acid by glutamate decarboxylase. Neurochem. Int. 5:697–712.

    Google Scholar 

  44. Nicholls, D. G. 1989. Release of glutamate, aspartate and γ-aminobutyric acid from isolated nerve terminals. J. Neurochem. 52:331–341.

    PubMed  Google Scholar 

  45. Balcar, V. J., and Johnston, G. A. R. 1987. Ontogeny of GABAergic systems in the brain. Pages 57–77, in Redburn, D. A. and Schousboe, A. (eds.), Neurotrophic Activity of GABA During Development, Alan R. Liss, New York, U.S.A.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balcar, V.J., Zetzsche, T. & Wolff, J.R. Glutamate decarboxylase in developing rat neocortex: Does it correlate with the differentiation of GABAergic neurons and synapses?. Neurochem Res 17, 253–260 (1992). https://doi.org/10.1007/BF00966667

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00966667

Key Words

Navigation