Skip to main content
Log in

Identification of novel mRNAs expressed in oligodendrocytes

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

To identify new proteins, which are expressed in oligodendrocytes and which may have a functional role in myelination, a rat oligodendrocyte cDNA library was screened using differential and subtractive screening techniques. Ten clones that have elevated levels of expression in brain were isolated. Two of these clones were characterized further and one clone, pC26.H2, was found to be closely related to mouse stearoyl-CoA desaturase 2 (SCD2), which catalyzes the synthesis of unsaturated fatty acid. From Northern blot and in situ hybridization studies, SCD2 mRNA was expressed primarily in brain with lower levels found in lung and spleen. In brain sections, SCD2 mRNA was found primarily in oligodendrocytes, although mRNA was detected at a low level in neurons, in particular in Purkinje cells in the cerebellum. Northern blot analysis of the other clone, p973.HB, indicated that it was expressed more selectively in brain. In mixed glial cultures oligodendrocytes were the only cells that expressed this mRNA, whereas in brain, neurons expressed this mRNA at a higher level than in oligodendrocytes. This clone is being actively pursued because of its unique expression exclusively in oligodendrocytes and neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Huxley, A. F., and Staempfli, R. 1949. Evidence for saltatory conduction in peripheral myelinated nerve fibres. J. Physiol. 108:315–339.

    Google Scholar 

  2. Raine, C. S. 1984. Morphology of myelin and myelination, Pages 1–50,in P. Morell (ed.), Myelin, Plenum Press, New York.

    Google Scholar 

  3. Mikoshiba, K., Okano, H., Tamura, T., and Ikenaka, K. 1991. Structure and function of myelin protein genes. Annu. Rev. Neurosci. 14:201–217.

    Google Scholar 

  4. Cambi, F., Lees, M. B., Williams, R. M., and Macklin, W. B. 1983. Chronic experimental allergic encephalomyelitis produced by bovine proteolipid apoprotein: Immunological studies in rabbits. Ann. Neurol. 13:303–308.

    Google Scholar 

  5. Tuohy, V. K., Lu, Z., Sobel, R. A., Laursen, R. A., and Lees, M. B. 1988. A synthetic peptide from myelin proteolipid protein induces experimental aliergic encephalomyelitis. J. Immun. 141:1126–1130.

    Google Scholar 

  6. Watson, J. B., and Margulies, J. E. 1993. Differential cDNA screening strategies to identify novel stage-specific proteins in the developing mammalian brain. Dev. Neurosci. In press.

  7. Watson, J. B., Battenberg, E. F., Wong, K. K., Bloom, F. E., and Sutcliffe, J. G. 1990. Subtractive cDNA cloning of RC3, a rodent cortex-enriched mRNA encoding a novel 78 residue protein. J. Neurosci. Res. 26:397–408.

    Google Scholar 

  8. Travis, G. H., Brennan, M. B., Danielson, P. E., Kozak, C. A., and Sutcliffe, J. G. 1989. Identification of a photoreceptor-specific mRNA encoded by the gene responsible for retinal degeneration slow (rds). Nature. 338:70–73.

    Google Scholar 

  9. Welcher, A. A., Suter, U., De Leon, M., Snipes, G. J., and Shooter, E. M. 1991. A myelin protein is encoded by the homologue of a growth arrest-specific gene. Proc. Natl. Acad. Sci. USA 88:7195–7199.

    Google Scholar 

  10. Suter, U., Welcher, A. A., Özcelik, T., Snipes, G. J., Kosaras, B., Francke, U., Billings-Gagliardi, S., Sidman, R. L., and Shooter, E. M. 1992. Trembler mouse carries a point mutation in a myelin gene. Nature. 356:241–244.

    Google Scholar 

  11. Patel, P. I., Roa, B. B., Welcher, A. A., Schoener-Scott, R., Trask, B. J., Pentao, L., Snipes, G. J., Garcia, C. A., Francke, U., Schooter, E. M. et al. 1992. The gene for the peripheral myelin protein PMP-22 is a candidate for Charcot-Marie-Tooth disease type 1A. Nat. Genet. 1:159–165.

    Google Scholar 

  12. McCarthy, K. D., and de Vellis, J. 1980. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J. Cell Biol. 85:890–902.

    Google Scholar 

  13. Watson, J. B., Coulter II, P. M., and Sutcliffe, J. G. 1992. Identification of genes enriched in expression in mammalian neostriatum and neocortex. Brain Dysfunct. 5:94–105.

    Google Scholar 

  14. Dworkin, M. B., and Dawid, I. B. 1980. Use of a cloned library for the study of abundant poly (A)+-RNA duringxenopus laevis development. Develop. Biol. 76:449–464.

    Google Scholar 

  15. Roach, A., Boylan, K., Horvath, S., Prusiner, S. B., and Hood, L. E. 1983. Characterization of cloned cDNA representing rat myelin basic protein: absence of expression in brain of shiverer mutant mice. Cell 34:799–806.

    Google Scholar 

  16. LeVine, S. M., Wong, D., and Macklin, W. B. 1990. Developmental expression of proteolipid protein and DM20 mRNAs and proteins in the rat brain. Dev. Neurosci. 12:235–250.

    Google Scholar 

  17. Bernier, L., Alvarez, F., Norgard, E. M., Raible, D. W., Mentaberry, A., Schembri, J. G., Sabatini, D. D., and Colman, D. R. 1987. Molecular cloning of a 2′,3′-cyclic nucleotide 3′-phosphodiesterase: mRNAs with different 5′ ends encode the same set of proteins in nervous and lymphoid tissue. J. Neurosci. 7:2703–2710.

    Google Scholar 

  18. Salzer, J. L., Holmes, W. P., and Colman, D. R. 1987. The amino acid sequence of the myelin-associated glycoproteins: homology to the immunoglobulin gene superfamily. J. Cell Biol. 104:957–965.

    Google Scholar 

  19. Travis, G. H. and Sutcliffe, J. G. 1988. Phenol emulsion-enhanced DNA-driven subtractive cDNA cloning: isolation of low-abundance monkey cortex-specific mRNAs. Proc. Natl. Acad. Sci. USA. 85:1696–1700.

    Google Scholar 

  20. Travis, G. H., Milner, R. J., and Sutcliffe, J. G. 1990. Preparation and use of subtractive cDNA hybridization probes for cDNA cloning, Pages 49–78,in Boulton, A. A., Baker, G. B., and Campagnoni, A. T. (eds.) Neuromethods: Molecular Neurobiological Techniques. vol. 16, Clifton, The Humana Press.

    Google Scholar 

  21. Wight, P. A., Duchala, C. S., Readhead, C., and Macklin, W. B. 1993. A myelin proteolipid protein-LacZ fusion protein is developmentally regulated and targeted to the myelin membrane in transgenic mice. J. Cell Biol. 123:443–454.

    Google Scholar 

  22. Asotra, K., and Macklin, W. B. 1993. Protein kinase C activity modulates myelin gene expression in enriched oligodendrocytes. J. Neurosci. Res. 34:571–588.

    Google Scholar 

  23. Amur-Umarjee, S., Phan, T. and Campagnoni, A. T. 1993. Myelin basic protein mRNA translocation in oligodendrocytes is inhibited by astrocytes in vitro. J. Neurosci. Res. 36:99–110.

    Google Scholar 

  24. Bartsch, S., Bartsch, U., Dörries, U., Faissner, A., Weller, A., Ekblom, P., and Schachner, M. 1992. Expression of tenascin in the developing and adult cerebellar cortex. J. Neurosci. 12:736–749.

    Google Scholar 

  25. Fuss, S., Wintergerst, E. S., Bartsch, U., and Schachner, M. 1993. Molecular characterization and in situ mRNA localization of the neural recognition molecule J1-160/180: a modular structure similar to tenascin. J. Cell Biol. 120:1237–1249.

    Google Scholar 

  26. Sanger, F., Nicklen, S., and Coulson, A. R. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA. 74:5463–5467.

    Google Scholar 

  27. Ranscht, B., Clapshaw, P. A., Price, J., Noble, M., Seifert, W. 1982. Development of oligodendrocytes and Schwann cells studied with a monoclonal antibody against galactocerebroside. Proc. Natl. Acad. Sci. USA. 79:2709–2713.

    Google Scholar 

  28. Forss-Petter, S., Danielson, P., and Sutcliffe, J. G. 1986. Neuronspecific enolase: complete structure of rat mRNA, multiple transcriptional start sites, and evidence suggesting post-transcriptional control. J. Neurosci. Res. 16:141–156.

    Google Scholar 

  29. Miller, F. D., Naus, C. C. G., Higgins, G. A., Bloom, F. E., and Milner, R. J. 1987. Developmentally regulated rat brain mRNAs: Molecular and anatomical characterization. J. Neurosci. 7:2433–2444.

    Google Scholar 

  30. Fischer, I., Konola, J., and Cochary, E. 1990. Microtubule associate protein (MAP1B) is present in cultured oligodendrocytes and co-localizes with tubulin. J. Neurosci. Res. 27:112–124.

    Google Scholar 

  31. Schoenfeld, T. A., McKerracher, L., Obar, R., and Vallee, R. B. 1989. MAP1A and MAP1B are structurally related microtubule associated proteins with distinct developmental patterns in the CNS. J. Neurosci. 9:1712–1730.

    Google Scholar 

  32. Enoch, H. G., Catalá, A., and Strittmatter, P. 1976. Mechanism of rat liver microsomal stearyl-CoA desaturase. Studies of the substrate specificity, enzyme-substrate interactions, and the function of lipid. J. Biol. Chem. 251:5095–5103.

    Google Scholar 

  33. Thiede, M. A., Ozols, J., and Strittmatter, P. 1986. Construction and sequence of cDNA for rat liver stearyl coenzyme A desaturase. J. Biol. Chem. 261:13230–13235.

    Google Scholar 

  34. Ntambi, J. M., Buhrow, S. A., Kaestner, K. H., Christy, R. J., Sibley, E., Kelly, Jr., T. J., and Lane, M. D. 1988. Differentiation-induced gene expression in 3T3-L1 preadipocytes. J. Biol Chem. 263:17291–17300.

    Google Scholar 

  35. Kaestner, K. H., Ntambi, J. M., Kelly, Jr., T. J., and Lane, M. D. 1989. Differentiation-induced gene expression in 3T3-L1 preadipocytes. J. Biol. Chem. 264:14755–14761.

    Google Scholar 

  36. Mihara, K. 1990. Structure and regulation of rat liver microsomal stearoyl-CoA desaturase gene. J. Biochem. 108:1022–1029.

    Google Scholar 

  37. Galli, C., Trzeciak, H. I., and Paoletti, R. 1972. Effects of essential fatty acid deficiency on myelin and various subcellular structures in rat brain. J. Neurochem. 19:1863–1867.

    Google Scholar 

  38. Tebbey, P. W., and Buttke, T. 1992. Stearoyl-CoA desaturase gene expression in lymphocytes. Biochem. & Biophys. Res. Comm. 186:531–536.

    Google Scholar 

  39. DeWille, J. W., and Farmer, S. J. 1992. Postnatal dietary fat influences mRNAs involved in myelination. Dev. Neurosci. 14:61–68.

    Google Scholar 

  40. Nave, K.-A., and Milner, R. J. 1989. Proteolipid proteins: structure and genetic expression in normal and myelin-deficient mutant mice. Crit. Rev. Neurobiol. 5:65–91.

    Google Scholar 

  41. Baumann, N. 1980. Neurological mutations affecting myelination. Inserm Symposium 14, Elsevier, Amsterdam, 565 pp.

    Google Scholar 

  42. DeWille, J. W., and Farmer, S. J. 1992. Quaking phenotype influences brain lipid-related mRNA levels. Neurosci. Lett. 141:195–198.

    Google Scholar 

  43. Sórg, B. A., Smith, M. M., and Campagnoni, A. T. 1987. Developmental expression of the myelin proteolipid protein and basic protein mRNAs in normal and dysmyelinating mutant mice. J. Neurochem. 49:1146–1154.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Special issue dedicated to Dr. Marjorie B. Lees.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baba, H., Fuss, B., Watson, J.B. et al. Identification of novel mRNAs expressed in oligodendrocytes. Neurochem Res 19, 1091–1099 (1994). https://doi.org/10.1007/BF00968721

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00968721

Key Words

Navigation