Skip to main content
Log in

Metabolism and nervous system disease: A challenge for our times. Part II

  • Review Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Arregui, A., and Barber, G. R. (1980). Chronic hypoxia in rats: Alterations of striato-nigral angiotensin converting enzyme, GABA, and glutamic acid decarboxylase.J. Neurochem. 34: 740–743

    Google Scholar 

  • Bakay, R. A. E., and Harris, A. B. (1981). Neurotransmitter, receptor and biochemical changes in monkey cortical epileptic foci.Brain Res. 206: 387–404.

    Google Scholar 

  • Bates, D., Weinshilboum, R. M., Campbell, R. J., and Sundt, T. M., Jr. (1977). The effect of lesions in the locus coeruleus on the physiological responses of the cerebral blood vessels in cats.Brain Res. 136: 431–443.

    Google Scholar 

  • Ben-Ari, Y., Dingledine, R., Kanazawa, I., and Kelly, J. S. (1976). Inhibitory effects of acetylcholine on neurones in the feline nucleus reticularis thalami.J. Physiol. 261: 647–671.

    Google Scholar 

  • Ben-Ari, Y., Krnjevic, K., and Reinhardt, W. (1979). Hippocampal seizures and failure of inhibition.Can. J. Physiol. Pharmacol. 57: 1462–1466.

    Google Scholar 

  • Bennett, M. V. L., and Goodenough, D. A. (1978). Gap junctions, electrotonic coupling, and intercellular communication.Neurosci. Res. Prog. Bull. 16: 375–186.

    Google Scholar 

  • Bernhard, C. G., and Bohm, E. (1965).Local Anaesthetics as Anticonvulsants, Almqvist Wiksell, Stockholm.

    Google Scholar 

  • Boehme, D. H., Cottrell, J. C., Leonberg, S. C., and Zeman, W. (1971). A dominant form of neuronal ceroid-lipofuscinosis.Brain 94: 745–760.

    Google Scholar 

  • Braak, H., and Goebel, H. H. (1978). Loss of pigment-laden stellate cells: A severe alteration of the isocortex in juvenile neuronal ceroid-lipofuscinosis.Acta Neuropathol. (Berl.) 42: 53–57.

    Google Scholar 

  • Brayden, J. E., and Bevan, J. A. (1985). Neurogenic muscarinic vasodilation in the cat. An example of endothelial cell-independent cholinergic relaxation.Circ. Res. 56: 205–211.

    Google Scholar 

  • Courtney, K. R. (1975). Mechanism of frequency-dependent inhibition of sodium currents in frog myelinated nerve by the lidocaine derivative GEA 968.J. Pharmacol. Exp. Ther. 195: 225–236.

    Google Scholar 

  • Courtney, K. R., Kendig, J. J., and Cohen, E. N. (1978). The rates of interaction of local anesthetics with sodium channels in nerve.J. Pharmacol. Exp. Ther. 207: 594–604.

    Google Scholar 

  • Davidoff, R. A., Graham, L. T., Jr., Shank, R. P., Werman, R., and Aprison, M. H. (1967a). Changes in amino acid concentrations associated with loss of spinal interneurons.J. Neurochem. 14: 1025–1031.

    Google Scholar 

  • Davidoff, R. A., Shank, R. P., Graham, L. T., Aprison, M. H., and Werman, R. (1967b). Association of glycine with spinal interneurons.Nature (Lond.) 214: 680–681.

    Google Scholar 

  • Dingledine, R., and Kelly, J. S. (1977). Brain stem stimulation and the acetylcholine-evoked inhibition of neurones in the feline nucleus reticularis thalami.J. Physiol. 271: 135–154.

    Google Scholar 

  • Dunwiddie, T., Mueller, A., Palmer, M., Stewart, J., and Hoffer, B. (1980). Electrophysiological interactions of enkephalins with neuronal circuitry in the rat hippocampus. I. Effects on pyramidal cell activity.Brain Res. 184: 311–300.

    Google Scholar 

  • Edvinsson, L., and MacKenzie, E. T. (1977). Amine mechanisms in the cerebral circulation.Pharmacol. Rev. 28: 275–348.

    Google Scholar 

  • Fentress, J. C. (ed.) (1976).Simpler Networks and Behavior, Sinauer, Sunderland, Mass.

    Google Scholar 

  • Foote, S. L., Bloom, F. E., and Aston-Jones, G. (1983). Nucleus locus ceruleus: New evidence of anatomical and physiological specificity.Physiol. Rev. 63: 844–914.

    Google Scholar 

  • Francis, A., and Pulsinelli, W. (1982). The response of GABAergic and cholinergic neurons to transient cerebral ischemia.Brain Res. 243: 271–278.

    Google Scholar 

  • Freedman, D. Z., and van Nieuwenhuizen, P. (1985). The hidden dimensions of spacetime.Sci. Am. 252: 74–81.

    Google Scholar 

  • Glaser, G. H., Penry, J. K., and Woodbury, D. M. (eds.) (1980).Antiepileptic Drugs. Mechanisms of Action, Raven Press, New York.

    Google Scholar 

  • Grafstein, B. (1963). Convulsant drug action on neuronally isolated cerebral cortex.Science 142: 973–975.

    Google Scholar 

  • Graubard, K. (1978). Synaptic transmission without action potentials: Input-output properties of a nonspiking presynaptic neuron.J. Neurophysiol. 41: 1014–1025.

    Google Scholar 

  • Hikosaka, O., and Wurtz, R. H. (1983). Visual and oculomotor functions of monkey substantia pars reticulata. IV. Relation of substantia nigra to superior colliculus.J. Neurophysiol. 49: 1285–1301.

    Google Scholar 

  • Hille, B. (1977). Local anesthetics: Hydrophilic and hydrophobic pathways for the drug-receptor reaction.J. Gen. Physiol. 69: 497–515.

    Google Scholar 

  • Hille, B. (1984).Ionic Channels of Excitable Membranes, Sinauer, Sunderland, Mass.

    Google Scholar 

  • Houser, C. R., Vaughn, J. E., Barber, R. P., and Roberts, E. (1980). GABA neurons are the major cell type of the nucleus reticularis thalami.Brain Res. 200: 341–354.

    Google Scholar 

  • Houser, C. R., Hendry, S. H. C., Jones, E. G., and Vaughn, J. E. (1983). Morphological diversity of immunocytochemically identified GABA neurons in the monkey sensory-motor cortex.J. Neurocytol. 12: 617–638.

    Google Scholar 

  • Hyman, B. T., Van Hoesen, G. W., Damasio, A. R., and Barnes, C. L. (1984). Alzheimer's disease: Cell-specific pathology isolates the hippocampal formation.Science 225: 1168–1170.

    Google Scholar 

  • Iadarola, M. J., and Gale, K. (1982). Substantia nigra: Sites of anticonvulsant activity mediated by γ-aminobutyric acid.Science 218: 1237–1240.

    Google Scholar 

  • Iberall, A. S. (1985). Outlining social physics for modern societies-locating culture, economics and politics: The Enlightenment reconsidered.Proc. Natl. Acad. Sci. (USA) 82: 5582–5584.

    Google Scholar 

  • Johnston, D., and Brown, T. H. (1981). Giant synaptic potential hypothesis for epileptiform activity.Science 211: 294–297.

    Google Scholar 

  • Killam, K. F. (1957). Convulsant hydrazides II: Comparison of electrical changes and enzyme inhibition induced by the administration of thiosemicarbazide.J. Pharmacol. Exp. Ther. 119: 263–271.

    Google Scholar 

  • Killam, K. F., and Bain, J. A. (1957). Convulsant hydrazides I: In vitro and in vivo inhibition of vitamin B6 enzymes by convulsant hydrazides.J. Pharmacol. Exp. Ther. 119: 255–262.

    Google Scholar 

  • Lai, F. M., Udenfriend, S., and Spector, S. (1975). Presence of norepinephrine and related enzymes in isolated brain microvessels.Proc. Natl. Acad. Sci. USA 72: 4622–4625.

    Google Scholar 

  • Lajtha, A., and Toth, J. (1966). Instability of cerebral proteins.Biochem. Biophys. Res. Commun. 23: 294–298.

    Google Scholar 

  • Lee, H. K., Dunwiddie, T., and Hoffer, B. (1980). Electrophysiological interactions of enkephalins with neuronal circuitry in the rat hippocampus. II. Effects on interneuron excitability.Brain Res. 184: 331–342.

    Google Scholar 

  • Lolley, R. N., Farber, D. B., Rayborn, M. E., and Hollyfield, J. G. (1977). Cyclic GMP accumulation causes degeneration of photoreceptor cells: Simulation of an inherited disease.Science 196: 664–666.

    Google Scholar 

  • Luria, A. R. (1968).The Mind of a Mnemonist, Basic Books, New York/London.

    Google Scholar 

  • MacVicar, B. A., and Dudek, F. E. (1980). Local synaptic circuits in rat hippocampus: Interactions between pyrimidal cells.Brain Res. 184: 220–223.

    Google Scholar 

  • Nicoll, R. A., Alger, B. E., and Jahr, C. E. (1980). Enkephalin blocks inhibitory pathways in the vertebrate CNS.Nature 287: 22–25.

    Google Scholar 

  • North, R. A., and Egan, T. M. (1984). Actions of acetylcholine on the membrane of single brain neurones. InWurtman, R. J.,Corkin, S. H.,andGrowdon, J. H., (eds.),Alzheimer 's Disease: Advances in Basic Research and Therapies, Proceedings of the Third Meeting of the International Study Group on the Treatment of Memory Disorders Associated with Aging, Zurich, Switzerland, January 13–15, 1984, pp. 145–159.

  • Pullarkat, R. K., Patel, V. K., and Brockerhoff, H. (1977). Leukocyte docosahexaenoic acid in junveile form of ceroid-lipofuscinosis.Neuropadiatrie 9: 127–130.

    Google Scholar 

  • Ribak, C. E. (1978). Aspinous and sparsely-spinous stellate neurons in the visual cortex of rats contain glutamic acid decarboxylase.J. Neurocytol. 7: 461–478.

    Google Scholar 

  • Ribak, C. E., Vaughn, J. E., and Saito, K. (1978). Immunocytochemical localization of glutamic acid decarboxylase in neuronal somata following colchicine inhibition of axional transport.Brain Res. 140: 315–332.

    Google Scholar 

  • Ribak, C. E., Vaughn, J. E., and Roberts, E. (1979). The GABA neurons and their axon terminals in rat corpus striatum as demonstrated by GAD immunocytochemistry.J. Comp. Neurol. 187: 261–284.

    Google Scholar 

  • Roberts, E. (1975). GABA in nervous system function-An overview. In Brady, R. O. (ed.),The Nervous System, Vol. I, The Basic Neurosciences, Raven Press, New York, pp. 541–552.

    Google Scholar 

  • Roberts, E. (1976). Disinhibition as an organizing principle in the nervous system-the role of the GABA system. Application to neurologic and psychiatric disorders. In Roberts, E., Chase, T. N., and Tower, D. B. (eds.),GABA in Nervous System Function, Raven Press, New York, pp. 515–539.

    Google Scholar 

  • Roberts, E. (1978a). Interrelationships of GABA neurons explored by immunocytochemical techniques. In Garattini, S., Pujol, J. F., and Samanin, R. (eds.),Interactions Between Putative Neurotransmitters in the Brain, Raven Press, New York, pp. 89–107.

    Google Scholar 

  • Roberts, E. (1978b). Roles of GABA neurons in information processing in the vertebrate CNS. In Karlin, A., Tennyson, V. M., and Vogel, H. J. (eds.),Neuronal Information Transfer, Academic Press, New York, pp. 213–239.

    Google Scholar 

  • Roberts, E. (1980). Epilepsy and antiepileptic drugs: A speculative synthesis. In Glaser, G. H., Penry, J. K., and Woodbury, D. M. (eds.),Antiepileptic Drugs: Mechanisms of Action, Raven Press, New York, pp. 667–713.

    Google Scholar 

  • Roberts, E. (1982). Alcoholism-A speculative view from the bridge. InAlcohol and Protein Synthesis: Ethanol, Nucleic Acid, and Protein Synthesis in the Brain and Other Organs, Proceedings of a Workshop October 24–25, 1980, Long Beach, Calif., sponsored by National Institute on Alcohol Abuse and Alcoholism College of Medicine, University of California at Irvine, Res. Monogr. No. 10, DHHS Publ. No. (ADM) 83-1198, pp. 221–295.

    Google Scholar 

  • Roberts, E. (1984). GABA-related phenomena, models of nervous system function, and seizures.Ann. Neural. 16 (Suppl.): S77–S89.

    Google Scholar 

  • Roberts, E., and Matthysse, S. (1970). Neurochemistry at the crossroads of neurobiology.Annu. Rev. Biochem. 39: 777–820.

    Google Scholar 

  • Roberts, R. C., Ribak, C. E., Peterson, G. M., and Oertel, W. H. (1984). Increased numbers of GABAergic neurons in the inferior colliculus of the genetically epilepsy prone rat.Soc. Neurosci Abstr. 10: 410.

    Google Scholar 

  • Scheibel, A. B. (1980). Anatomical and physiological substrates of arousal: A view from the bridge. In Hobson, J. A., and Brazier, M. A. B. (eds.),The Reticular Formation Revisited, Raven Press, New York, pp. 55–66.

    Google Scholar 

  • Scheller, R. H., Jackson, J. F., McAllister, L. B., Rothman, B. S., Mayeri, E., and Axel, R. (1983). A single gene encodes multiple neuropeptides mediating stereotyped behavior.Cell 32: 7–22.

    Google Scholar 

  • Scremin, O. U., Rovere, A. A., Raynald, A. C., and Giardini, A. (1973). Cholinergic control of blood flow in the cerebral cortex of the rat.Stroke 4: 232–239.

    Google Scholar 

  • Steriade, M., Ropert, N., Kitsikis, A., and Oakson, G. (1980). Ascending activating neuronal networks in midbrain reticular core and related rostral systems. In Hobson, J. A., and Brazier, M. A. B. (eds.),The Reticular Formation Revisited, Raven Press, New York, pp. 125–167.

    Google Scholar 

  • Swanson, L. W., Connelly, M. A., and Hartman, B. K. (1977). Ultrastmctural evidence for central monoaminergic innervation of blood vessels in the paraventricular nucleus of the hypothalamus.Brain Res. 136: 166–173.

    Google Scholar 

  • Taylor, C. P., and Dudek, F. E. (1984). Excitation of hippocampal pyramidal cells by an electrical field effect.J. Neurophysiol. 52: 126–142.

    Google Scholar 

  • Traub, R. D., and Wong, R. K. S. (1982). Cellular mechanism of neuronal synchronization in epilepsy.Science 216: 745–747.

    Google Scholar 

  • Williams, R. S., Lott, I. T., Ferrante, R. J., and Caviness, V. S. (1977). The cellular pathology of neuronal ceroid-lipofuscinosis.Arch. Neural. 34: 298–305.

    Google Scholar 

  • Zeman, W. (1971). The neuronal ceroid-lipofuscinosis-Batten-Vogt syndrome: A model for human aging?Adv. Gerontol. Res. 3: 147–170.

    Google Scholar 

  • Zeman, W. (1974). Studies in the neuronal ceroid-lipofuscinoses.J. Neuropathol. Exp. Neural. 33, 1–12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roberts, E. Metabolism and nervous system disease: A challenge for our times. Part II. Metab Brain Dis 1, 91–117 (1986). https://doi.org/10.1007/BF00999381

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00999381

Keywords

Navigation