Skip to main content
Log in

Optical imaging of architecture and function in the living brain sheds new light on cortical mechanisms underlying visual perception

  • Published:
Brain Topography Aims and scope Submit manuscript

Summary

Long standing questions related to brain mechanisms underlying perception can finally be resolved by direct visualization of the architecture and function of mammalian cortex. This advance has been accomplished with the aid of two optical imaging techniques with which one can literally see how the brain functions. The upbringing of this technology required a multi-disciplinary approach integrating brain research with organic chemistry, spectroscopy, biophysics, computer sciences, optics and image processing. Beyond the technological ramifications, recent research shed new light on cortical mechanisms underlying sensory perception. Clinical applications of this technology for precise mapping of the cortical surface of patients during neurosurgery have begun. Below is a brief summary of our own research and a description of the technical specifications of the two optical imaging techniques. Like every technique, optical imaging also suffers from severe limitations. Here we mostly emphasize some of its advantages relative to all alternative imaging techniques currently in use. The limitations are critically discussed in our recent reviews. For a series of other reviews, see Cohen (1989).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anglister, L., Farber, I.C., Shahar, A. and Grinvald, A. Localization of voltage-sensitive calcium channels along developing neurites; their possible role in regulating neurite elongation. Dev. Biol., 1982, 94: 351–365.

    PubMed  Google Scholar 

  • Bartfeld, E. and Grinvald, A. Architecture of processing modules in primate striate cortex underlying color, orientation and depth perception. Proc. Natl. Acad. Sci. USA., 1992, (in press).

  • Bonhoeffer, T. and Grinvald, A. Iso-orientation domains in cat visual cortex are arranged in pinwheel like patterns. Nature, 1991, 353: 429–431.

    PubMed  Google Scholar 

  • Cohen, L.B. Optical approaches to neuron function. Ann Rev. Physiol. 1989, 51: 487–582.

    Google Scholar 

  • Frostig, R.D., Lieke, E.E., Ts'o, D.Y. and Grinvald, A. Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high resolution optical imaging of intrinsic signals. Proc. Natl. Acad. Sci. USA, 1990, 87: 6082–6086.

    PubMed  Google Scholar 

  • Grinvald, A., Salzberg, B.M. and Cohen, L.B. Simultaneous recording from several neurons in an invertebrate central nervous system. Nature, 1977, 268: 140–141.

    PubMed  Google Scholar 

  • Grinvald, A., Cohen, L.B., Lesher, S. and Boyle, M.B. Simultaneous optical monitoring of activity of many neurons in invertebrate ganglia using a 124 element photodiode array. J. Neurophysiol., 1981, 45: 829–840.

    PubMed  Google Scholar 

  • Grinvald, A. and Farber, I.C. Optical recording of calcium action potentials from growth cones of cultures neurons using a laser microbeam. Science, 1981, 212: 1164–1166.

    PubMed  Google Scholar 

  • Grinvald, A., Ross, W.N. and Farber, I.C. Simultaneous optical measurements of electrical activity from multiple sites on processes of cultured neurons. Proc. Natl. Acad. Sci. USA, 1981, 78: 3245–3249.

    PubMed  Google Scholar 

  • Grinvald, A., Hildesheim, R., Farber, I.C. and Anglister, L. Improved fluorescent probes for the measurements of rapid changes in membrane potential. Biophys. J., 1982, 39: 301–308.

    PubMed  Google Scholar 

  • Grinvald, A., Manker, A. and Segal, M. Visualization of the spread of electrical activity in rat hippocampal slices by voltage-sensitive optical probes. J. Physiol., 1982, 333: 269–291.

    PubMed  Google Scholar 

  • Grinvald, A., Fine, A., Farber, I.C. and Hildesheim, R. Fluorescence monitoring of electrical responses from small neurons and their processes. Biophys. J., 1983, 42: 195–198.

    PubMed  Google Scholar 

  • Grinvald, A. Real-time optical imaging of neuronal activity: from growth cones to the intact brain. Trends Neurosci., 1984, 7: 143–150.

    Google Scholar 

  • Grinvald, A., Anglister, L., Freeman, J.A., Hildesheim, R. and Manker, A. Real-time optical imaging of naturally evoked electrical activity in intact frog brain. Nature, 1984, 308: 848–850.

    PubMed  Google Scholar 

  • Grinvald, A., Lieke, E., Frostig, R.D., Gilbert, C.D. and Wiesel T.N. Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature, 1986, 324: 361–364.

    PubMed  Google Scholar 

  • Grinvald, A., Salzberg, B.M., Lev-Ram, V. and Hildesheim, R. Optical recording of synaptic potentials from processes of single neurons using intracellular potentiometric dyes. Biophys. J., 1987, 51: 643–651.

    PubMed  Google Scholar 

  • Grinvald, A., Frostig, R.D., Lieke E. and Hildesheim, R. Optical imaging of neuronal activity. Physiol. Rev., 1988, 68: 1285–1366.

    PubMed  Google Scholar 

  • Grinvald, A., Bonhoeffer, T., Malonek, Shoham, Bartfeld, E., Arieli, A., Hildesheim R. and & Ratzlaff, E.H. Optical imaging of architecture and function in the living brain. In: Memory: Organization and Locus of Change. Oxford University Press, 1991: 49–85.

  • Grinvald, A., Frostig, R.D., Siegel, R.M. and Bartfeld, E. High-resolution optical imaging of functional brain architecture in the awake monkey. Proc. Natl. Acad Sci. USA, 1991, 88: 11559–11563.

    PubMed  Google Scholar 

  • Haugland, M.M., Ojemann, G.A. and Hochman, D.W. Optical imaging of epileptiform and functional activity in human cerebral cortex. Nature, 1992, 358: 668–671.

    PubMed  Google Scholar 

  • Kwong, K.K., Belliveau, J.W., Chesler, D.A., Goldberg, I.E., Weisskopf, R.M., Poncelet, B.P., Kennedy, D.N., Hoppel, B.E., Cohen, M.S., Turner, R., Cheng, H.-M., Brady, T.J. and Rosen, B.R. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc. Natl. Acad. Sci. USA, 1992, 89: 5675–5679.

    PubMed  Google Scholar 

  • Lieke, E.E., Frostig, R.D., Arieli, A., Ts'o, D.Y., Hildesheim, R. and Grinald, A., Optical imaging of cortical activity: a realtime imaging using extrinsic dye-signals and high resolution imaging based on slow intrinsic-signals. Ann. Rev. Physiol., 1989, 51: 543–559.

    Google Scholar 

  • Ogawa, S., Tank, D.W., Menon, R., Ellermann, J.M., Kim, S.-G., Merkle, H. and Ugurbil, K. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc. Natl. Acad. Sci. USA, 1992, 89: 5951–5955.

    PubMed  Google Scholar 

  • Orbach, H.S., Cohen, L.B. and Grinvald, A. Optical mapping of electrical activity in rat somatosensory and visual cortex. J. Neurosci., 1985, 5: 1886–1895.

    PubMed  Google Scholar 

  • Ratzlaff, E.H. and Grinvald, A. A tandem-lens epifluorescence macroscope: hunderd-fold brightness advantage for wide-field imaging. J. Neurosci. Methods, 1991, 36: 127–137.

    PubMed  Google Scholar 

  • Ts'o, D.Y., Frostig, R.D., Lieke, E.E. and Grinvald, A. Functional organization of primate visual cortex revealed by high resolution optical imaging. Science, 1990, 249: 417–420.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grinvald, A. Optical imaging of architecture and function in the living brain sheds new light on cortical mechanisms underlying visual perception. Brain Topogr 5, 71–75 (1992). https://doi.org/10.1007/BF01129033

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01129033

Key words

Navigation