Skip to main content
Log in

The ganglion cell response to optic nerve injury in the cat: differential responses revealed by neurofibrillar staining

  • Published:
Journal of Neurocytology

Summary

The early responses of cat retinal ganglion cells to axotomy have been examined using neurofibrillar and Nissl-stained wholemounts. We were interested to learn whether the enhanced neurofilament expression, seen in a number of neuronal systems, was also present in different neuronal populations of the cat retina and could be used to study the distribution of these cells. We found that beta ganglion cells degenerate very rapidly after axotomy with the nuclei becoming pyknotic within a few days. Few beta cells showed increased neurofibrillar staining of the dendrites. The cell body degenerated prior to any visible degenerative changes in the axon. A proportion of the alpha and gamma ganglion cells degenerated in the first two to three weeks after axotomy. The alpha cells underwent markedly enhanced neurofibrillar staining of their dendrites prior to degeneration. The Nissl material of the cell bodies diminished as the cells degenerated but we have not observed pyknotic nuclei. The dendritic trees of some axotomised gamma cells were also revealed by the neurofibrillar stain three weeks after axotomy. These results show that retinal ganglion cells do not degenerate by a dying back process. We suggest that the rapid degeneration of the beta ganglion cell population comes about by excitotoxic cell death, a consequence of their large glutamatergic input from bipolar cells. The degenerating beta ganglion cells have the morphological appearance of cells undergoing apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allcutt, D., Berry, M. &Sievers, J. (1984a) A quantitative comparison of the reactions of retinal ganglion cells to optic nerve crush in neonatal and adult mice.Developmental Brain Research 16, 219–30.

    Google Scholar 

  • Allcutt, D., Berry, M. &Sievers, J. (1984b) A qualitative comparison of the reactions of retinal ganglion cell axons to optic nerve crush in neonatal and adult mice.Developmental Brain Research 16, 231–40.

    Google Scholar 

  • Barron, K. D., Dentinger, M. P., Krohel, G., Easton, S. K. &Mankes, R. (1986) Qualitative and quantitative ultrastructural observations on retinal ganglion cell layer of rat after intraorbital optic nerve crush.Journal of Neurocytology 15, 345–62.

    Google Scholar 

  • Boycott, B. B. &Wässle, H. (1974) The morphological types of ganglion cells of the domestic cat's retina.Journal of Physiology 240, 397–419.

    Google Scholar 

  • Carmignoto, G., Maffei, L., Candeö, P., Canella, R. &Comelli, C. (1989) Effect of NGF on the survival of rat retinal ganglion cells following optic nerve section.Journal of Neuroscience 9, 1263–72.

    Google Scholar 

  • Choi, D. W. (1988) Glutamate neurotoxicity and diseases of the nervous system.Neuron 1, 623–34.

    Google Scholar 

  • Dräger, U. C. &Hofbauer, A. (1984) Antibodies to heavy neurofilament subunit detect a subpopulation of damaged ganglion cells in the retina.Nature 309, 624–6.

    Google Scholar 

  • Freed, M. A. &Sterling, P. (1988) The on-alpha ganglion cell of the cat retina and its presynaptic cell types.Journal of Neuroscience 8, 2303–20.

    Google Scholar 

  • Gambetti, P., Autilio-Gambetti, L. &Papasozomenos, S. Ch. (1981) Bodian's silver method stains neurofilament polypeptides.Science 213, 1521–2.

    Google Scholar 

  • Holländer, H., Bisti, S., Maffei, L. &Hebel, R. (1984) Electroretinographic responses and retrograde changes of retinal morphology after intracranial optic nerve section. A quantitative analysis in the cat.Experimental Brain Research 55, 483–93.

    Google Scholar 

  • Hughes, A. (1981) Population magnitudes and distribution of the major modal classes of a retinal ganglion cell as estimated from HRP filling and a systematic survey of the soma diameter spectra for classical neurones.Journal of Comparative Neurology 197, 303–39.

    Google Scholar 

  • Hughes, A. (1986) New perspectives in retinal organisation.Progress in Retinal Research 4, 243–313.

    Google Scholar 

  • Jacobson, M. (1991)Developmental Neurobiology. New York: Plenum Press.

    Google Scholar 

  • James, G. R. (1933) Degeneration of ganglion cell following axonal injury.Archives of Ophthalmology 9, 338–43.

    Google Scholar 

  • Kaplan, E. (1991) The receptive field structure of retinal ganglion cells in cat and monkey. InVision and Visual Dysfunction (edited byCronly-Dillon, J.),Volume 4, The Neural Basis of Visual Function (edited byLeventhal, A. G.), pp. 10–40. Basingstoke: The MacMillan Press.

    Google Scholar 

  • Karschin, A., Aizenman, E. &Lipton, S. (1988) The interaction of agonists and noncompetitive antagonists at the excitatory amino acid receptors on retinal ganglion cellsin vitro.Journal of Neuroscience 8, 2895–906.

    Google Scholar 

  • Kerr, J. F. R., Wyllie, A. H. &Currie, A. R. (1972) Apoptosis: a basic biological phenomenon with wide ranging implications in tissue kinetics.British Journal of Cancer 26, 239–57.

    Google Scholar 

  • Klosen, P., Anderton, B. H., Brion, J. -P. &Van Den Bosch De Aguilar, P. (1990) Perikaryal neurofilament phosphorylation in axotomized and 6-OH-dopamine-lesioned CNS neurons.Brain Research 526, 259–69.

    Google Scholar 

  • Kolb, H., Nelson, R. &Mariani, A. (1981) Amacrine cells, bipolar cells and ganglion cells of the cat retina: a Golgi study.Vision Research 21, 1081–114.

    Google Scholar 

  • Leinfelder, P. J. (1938) Retrograde degeneration in the optic nerves and retinal ganglion cells.Transactions of the American Ophthalmological Society 36, 307–15.

    Google Scholar 

  • Lowrie, M. B. &Vrbova, G. (1992) Dependence of postnatal motoneurones on their targets: review and hypothesis.Trends in Neuroscience 15, 82–4.

    Google Scholar 

  • Mansour, H., Bignami, A., Labkovsky, B. &Dahl, D. (1989) Neurofilament phosphorylation in neuronal perikarya following axotomy: a study of rat spinal cord with ventral and dorsal root transection.Journal of Comparative Neurology 283, 481–5.

    Google Scholar 

  • Marc, R. W., Liu, W. -L. S., Kalloniatis, M., Raiguel, S. F. &Van Haesendonck, E. (1990) Patterns of glutamate activity in the goldfish retina.Journal of Neuroscience 10, 4006–34.

    Google Scholar 

  • McGuire, B. A., Stevens, J. K. &Sterling, P. (1986) Microcircuitry of beta ganglion cells in cat retina.Journal of Neuroscience 6, 907–18.

    Google Scholar 

  • Montero, V. M. &Guillery, R. W. (1968) Degeneration of the dorsal lateral geniculate nucleus of the rat following interruption of the retinal or cortical connections.Journal of Comparative Neurology 134, 211–41.

    Google Scholar 

  • Naito, J. (1986) Course of retinogeniculate projection fibers in the cat optic nerve.Journal of Comparative Neurology 251, 376–87.

    Google Scholar 

  • Peichl, L. &Wässle, H. (1981) Morphological identification of on- and off-centre brisk transient (Y) cells in the cat retina.Proceedings of the Royal Society of London, B 212, 139–56.

    Google Scholar 

  • Peichl, L., Ott, H. &Boycott, B. B. (1987) Alpha ganglion cells in mammalian retinae.Proceedings of the Royal Society of London, B 231, 169–97.

    Google Scholar 

  • Perry, V. H. (1979) The ganglion cell layer of the retina of the rat: a Golgi study.Proceedings of the Royal Society of London, B 204, 363–75.

    Google Scholar 

  • Quigley, H. A., Davis, E. B., Anderson, D. R. (1977) Descending optic nerve degeneration in primates.Investigative Ophthalmology and Visual Science 16, 841–9.

    Google Scholar 

  • Ramön Y Cajal, S. (1928)Degeneration and Regeneration of the Nervous System. (Translated byMay, R. M.) London: Humphrey Milford. New edition, with an introduction and additional translations byDefelipe, J. &Jones, E. G. (1991). New York, Oxford: Oxford University Press.

    Google Scholar 

  • Ross, D. T. &Ebner, F. F. (1990) Thalamic retrograde degeneration following cortical injury: an excitotoxic process?Neuroscience 35, 525–50.

    Google Scholar 

  • Silveira, L. C. L. (1985)Organização do Sistema Visual de Roedores da Amazônia: óptica Ocular e Distribuição das Células Ganglionares Retinianas. Ph.D. Thesis. Rio de Janeiro: Instituto de Biofisica, Universidade Federal do Rio de Janeiro.

    Google Scholar 

  • Silveira, L. C. L. &Perry, V. H. (1990) A neurofibrillar staining method for retina and skin: a simple modification for improved staining and reliability.Journal of Neuroscience Methods 33, 11–21.

    Google Scholar 

  • Silveira, L. C. L. &Perry, V. H. (1991) The topography of magnocellular projecting ganglion cells (M-ganglion cells) in the primate retina.Neuroscience 40, 217–37.

    Google Scholar 

  • Stone, J. &Clarke, R. (1980) Correlation between soma size and dendritic morphology in cat retinal ganglion cells: evidence of further variation in gamma-cell class.Journal of Comparative Neurology 192, 211–17.

    Google Scholar 

  • Wässle, H., Peichl, L. &Boycott, B. B. (1981) Morphology and topography of on- and off-alpha cells in the cat retina.Proceedings of the Royal Society of London, B 212, 157–75.

    Google Scholar 

  • Wässle, H. &Boycott, B. B. (1991) Functional architecture of the mammalian retina.Physiological Reviews,71, 447–80.

    Google Scholar 

  • Weibel, E. R. (1969) Stereological principles for morphometry in electron microscopic cytology.International Review of Cytology,26, 235–301.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silveira, L.C.L., Russelakis-Carneiro, M. & Perry, V.H. The ganglion cell response to optic nerve injury in the cat: differential responses revealed by neurofibrillar staining. J Neurocytol 23, 75–86 (1994). https://doi.org/10.1007/BF01183863

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01183863

Keywords

Navigation