Skip to main content
Log in

Expression of neurofilament proteins by horizontal cells in the rabbit retina varies with retinal location

  • Published:
Journal of Neurocytology

Summary

Classical neurofibrillar staining methods and immunocytochemistry with antibodies to the light, medium and heavy chain subunits of the neurofilament triplet have been used forin situ andin vitro investigation of the organization of neurofilaments in A- and B-type horizontal cells of the adult rabbit retina. Surprisingly, their expression and organization within a cell is dependent on its location along the dorso-ventral axis of the retina. A-type horizontal cells in superior retina consistently stained with a wide variety of neurofibrillar methods to reveal neurofibrillar bundles, which immunocytochemistry showed to contain all three neurofilament subunits. A-type horizontal cells in inferior retina were uniformly refractory to neurofibrillar staining, although they expressed all three subunits. However, there was less of the light and medium subunits; the organization of the filaments into bundles (neurofibrils) is minimal. B-type horizontal cells could not be stained with any neurofibrillar method and were not recognizable byin situ immunocytochemistry. However, B-type cells could be seen to express all three subunitsin vitro, but the expression of the light and medium subunits was weak. There was only a slight difference between B-type cells taken from superior and inferior retina. Combined with the results of recent transfection studies, these findings suggest that the amount of the light neurofilament subunit present in a horizontal cell determines its content of neurofibrillar bundles, and that rabbit horizontal cells may contain more neurofilament protein, particularly of the heavy subunit, than is used for neurofilament formation. The results also show that determination of the neurofilament protein content of a population of nerve cells can be critically dependent on examination of single isolated cells. Isolated rabbit horizontal cells provide a promising system for studies of the mechanical, molecular and biochemical properties of neurofilaments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Autilio-Gambetti, L., Crane, R. &Gambetti, P. (1986) Binding of Bodian's silver and monoclonal antibodies to defined regions of human neurofilament subunits: Bodian's silver reacts with a highly charged unique domain of neurofilaments.Journal of Neurochemistry 46, 366–70.

    PubMed  Google Scholar 

  • Bielschowsky, M. &Pollak, B. (1904) Zur Kenntniss der Innervation des Säugethierauges.Neurologisches Centralblatt 23, 387–94.

    Google Scholar 

  • Bloomfield, S. A. (1992) A unique morphological subtype of horizontal cell in the rabbit retina with orientation-sensitive response properties.Journal of Comparative Neurology 320, 69–85.

    PubMed  Google Scholar 

  • Bloomfield, S. A. &Miller, R. F. (1982) A physiological and morphological study of the horizontal cell types of the rabbit.Journal of Comparative Neurology 208, 288–303.

    PubMed  Google Scholar 

  • Bodian, D. (1936) A new method for staining nerve fibers and nerve endings in mounted paraffin sections.Anatomical Record 65, 89–97.

    Google Scholar 

  • Bodian, D. (1937) The staining of paraffin sections of nervous tissues with activated Protargol. The role of fixatives.Anatomical Record 69, 153–62.

    Google Scholar 

  • Bottenstein, J. E. &Sato, G. H. (1979) Growth of a rat neuroblastoma cell line in serum-free supplemented medium.Proceedings of the National Academy of Sciences (USA) 76, 514–17.

    Google Scholar 

  • Boycott, B. B. &Hopkins, J. M. (1982) Microglia in the retina of monkey and other mammals; its distinction from other types of glia and horizontal cells.Neuroscience 6, 679–88.

    Google Scholar 

  • Boycott, B. B. &Peichl, L. (1981) Neurofibrillar staining of cat retinae.Proceedings of the Royal Society of London, Series B 212, 153–6.

    Google Scholar 

  • Boycott, B. B. Peichl, L. &Wässle, H. (1978) Morphological types of horizontal cell in the retina of the domestic cat.Proceedings of the Royal Society of London, Series B 203, 229–45.

    Google Scholar 

  • Cajal, S. R. (1905) Das Neurofibrillennetz der Retina.Internationale Monatsschrift für Anatomie und Physiologie 21, 369–99.

    Google Scholar 

  • Cajal, S. R. (1911)Histologie du système nerveux de l'homme & des vertébrés, vol 1. Paris: A. Maloine.

    Google Scholar 

  • Ching, G. Y. &Liem, R. K. H. (1993) Assembly of type IV neuronal intermediate filaments in nonneuronal cells in the absence of preexisting cytoplasmic intermediate filaments.Journal of Cell Biology 122, 1323–35.

    PubMed  Google Scholar 

  • Dacheux, R. F. &Raviola, E. (1982) Horizontal cells in the retina of the rabbit.Journal of Neuroscience 2, 1486–93.

    PubMed  Google Scholar 

  • Dowling, J. E., Brown, J. E. &Major, D. (1966) Synapses of horizontal cells in rabbit and cat retinas.Science 153, 1639–41.

    PubMed  Google Scholar 

  • Dräger, U. C. (1983) Coexistence of neurofilaments and vimentin in a neurone of adult mouse retina.Nature 303, 169–72.

    PubMed  Google Scholar 

  • Fisher, S. K. &Boycott, B. B. (1974) Synaptic connexions made by horizontal cells within the outer plexiform layer of the retina of the cat and the rabbit.Proceedings of the Royal Society of London, Series B 186, 317–31.

    Google Scholar 

  • Fliegner, K. H. &Liem, R. K. H. (1991) Cellular and molecular biology of neuronal intermediate filaments.International Review of Cytology 131, 109–67.

    PubMed  Google Scholar 

  • Gallego, A. (1971) Horizontal and amacrine cells in the mammal's retina.Vision Research 11 (Suppl. 3), 33–50.

    Google Scholar 

  • Gambetti, P., Autilio-Gambetti, L. &Papasozomenos, S. Ch. (1981) Bodian's silver method stains neurofilament polypeptides.Science 213, 1521–2.

    PubMed  Google Scholar 

  • Gatenby, J. B. &Beams, H. W. (1950)The Microtomists Vade-mecum, 11th ed. London: Churchill.

    Google Scholar 

  • Gilbert, D. S. (1975) Axoplasm architecture and physical properties as seen in theMyxicola giant axon.Journal of Physiology 253, 257–301.

    PubMed  Google Scholar 

  • Gotow, T. &Tanaka, J. (1994) Phosphorylation of neurofilament H subunit as related to arrangement of neurofilaments.Journal of Neuroscience Research 37, 691–713.

    PubMed  Google Scholar 

  • Gray, E. G. &Guillery, R. W. (1961) The basis for silver staining of synapses of the mammalian spinal cord: a light and electron microscope study.Journal of Physiology 157, 581–8.

    PubMed  Google Scholar 

  • Gray, E. G. &Guillery, R. W. (1966) Synaptic morphology in the normal and degenerating nervous system.International Review of Cytology 19, 111–82.

    PubMed  Google Scholar 

  • Guillery, R. W. (1970) Light and electron-microscopic studies of normal and degenerating axons. InContemporary Research Methods in Neuroanatomy (edited byNauta, W. J. H. &Ebbesson, S. O. E.) pp. 77–105. Berlin: Springer-Verlag.

    Google Scholar 

  • Harris, J., Ayyub, C. &Shaw, G. (1991) A molecular dissection of the carboxyterminal tails of the major neurofilament subunits NF-M and NF-H.Journal of Neuroscience Research 30, 47–62.

    Google Scholar 

  • Harris, J., Moreno, S., Shaw, G. &Mugnaini, E. (1993) Unusual neurofilament composition in cerebellar unipolar brush neurons.Journal of Neurocytology 22, 1039–59.

    PubMed  Google Scholar 

  • Holmes, W. (1947) The peripheral nerve biopsy. InRecent Advances in Clinical Pathology (edited byDyke, S. C.) pp. 402–17. London: Churchill.

    Google Scholar 

  • Kaprielian, Z. &Patterson, P. H. (1994) The molecular basis of retinotectal topography.Bio Essays 16, 1–11.

    Google Scholar 

  • Kolb, H. (1977) The organization of the outer plexiform layer in the retina of the cat: electron microscopic observations.Journal of Neurocytology 6, 131–53.

    PubMed  Google Scholar 

  • Kolb, H. &Normann, R. A. (1982) A-type horizontal cells of the superior edge of the linear visual streak of the rabbit retina have oriented, elongated dendritic trees.Vision Research 22, 905–16.

    PubMed  Google Scholar 

  • Lee, M. K. &Cleveland, D. W. (1994) Neurofilament function and dysfunction: involvement in axonal growth and neuronal disease.Current Opinion in Cell Biology 6, 34–40.

    PubMed  Google Scholar 

  • Lee, M. K., Xu, Z., Wong, P. C. &Cleveland, D. W. (1993) Neurofilaments are obligate heteropolymersin vivo.Journal of Cell Biology 122, 1337–50.

    Google Scholar 

  • Lefebvre, S. &Mushynski, W. E. (1987) Calcium binding to untreated and dephosphorylated porcine neurofilaments.Biochemical and Biophysical Research Communications 145, 1006–11.

    PubMed  Google Scholar 

  • Lefebvre, S. &Mushynski, W. E. (1988) Characterization of the cation-binding properties of porcine neurofilaments.Biochemistry 27, 8503–8.

    PubMed  Google Scholar 

  • Löhrke, S., Möckel, V. &Hofmann, H. D. (1994) Expression of horizontal cell phenotypes in monolayer cultures from immature rabbit retina.Developmental Brain Research 77, 97–110.

    PubMed  Google Scholar 

  • Marsh-Armstrong, N., McCaffery, P., Gilbert, W., Dowling, J. E. &Dräger, U. C. (1994) Retinoic acid is necessary for development of the ventral retina in zebrafish.Proceedings of the National Academy of Sciences (USA) 91, 7286–90.

    Google Scholar 

  • Matus, A. (1988) Neufilament protein phosphorylation — where, when and why.Trends in Neurosciences 11, 291–2.

    PubMed  Google Scholar 

  • McCaffery, P., Tempst, P., Lara, G. &Dräger, U. C. (1991) Aldehyde dehydrogenase is a positional marker in the retina.Development 112, 693–702.

    PubMed  Google Scholar 

  • McCaffery, P., Lee, M. O., Wagner, M. A., Sladek, N. E. &Dräger, U. C. (1992) Asymmetrical retinoic acid synthesis in the dorsoventral axis of the retina.Development 115, 371–82.

    PubMed  Google Scholar 

  • Mills, S. L. &Massey, S. C. (1994) Distribution and coverage of A- and B-type horizontal cells stained with neurobiotin in the rabbit retina.Visual Neuroscience 11, 549–60.

    PubMed  Google Scholar 

  • Nixon, R. A., Paskevich, P. A., Sihag, R. K. &Thayer, C. Y. (1994) Phosphorylation on carboxyl terminus domains of neurofilament proteins in retinal ganglion cell neuronsin vivo: influences on regional neurofilament accumulation, interneurofilament spacing, and axon caliber.Journal of Cell Biology,126, 1031–46.

    PubMed  Google Scholar 

  • Peichl, L. &González-Soriano, J. (1993) Unexpected presence of neurofilaments in axon-bearing horizontal cells of the mammalian retina.Journal of Neuroscience 13, 4091–100.

    PubMed  Google Scholar 

  • Peichl, L., Buhl, E. H. &Boycott, B. B. (1987) Alpha ganglion cells in the rabbit retina.Journal of Comparative Neurology 263, 25–41.

    PubMed  Google Scholar 

  • Peters, A., Palay, S. L. &Webster, H. Def. (1991)The Fine Structure of the Nervous System. 3rd ed. New York: Oxford University Press.

    Google Scholar 

  • Raviola, E. &Dacheux, R. F. (1983) Variations in structure and response properties of horizontal cells in the retina of the rabbit.Vision Research 23, 1221–7.

    PubMed  Google Scholar 

  • Richardson, K. C. (1960) Studies on the structure of autonomic nerves in the small intestine, correlating the silver-impregnated image in light microscopy with the permanganate-fixed ultrastructure in electronmicroscopy.Journal of Anatomy 74, 457–72.

    Google Scholar 

  • Romeis, B. (1968)Mikroskopische Technik. München: R. Oldenbourg, Verlag.

    Google Scholar 

  • Sala, G. (1904) Beitrag zum Studium der feineren Struktur der Netzhaut.Anatomischer Anzeiger 25, 246–9.

    Google Scholar 

  • Scheibe, R., Schnitzer, J., Röhrenbeck, J., Wohlrab, F. &Reichenbach, A. (1995) Development of A-type (axonless) horizontal cells in the rabbit retina.Journal of Comparative Neurology, in press.

  • Schnitzer, J. (1985) Distribution and immunoreactivity of glia in the retina of the rabbit.Journal of Comparative Neurology 240, 128–42.

    PubMed  Google Scholar 

  • Shaw, G. (1986) Neurofilaments: abundant but mysterious neuronal structures.Bio Essays 4, 161–6.

    Google Scholar 

  • Shaw, G. (1991) Neurofilament proteins. InThe Neuronal Cytoskeleton (edited byBurgoyne, R.) pp. 185–214. New York: Wiley-Liss.

    Google Scholar 

  • Shaw, G. &Weber, K. (1983) The structure and development of the rat retina: an immunofluorescence microscopical study using antibodies specific for intermediate filament proteins.European Journal of Cell Biology 30, 219–32.

    PubMed  Google Scholar 

  • Shaw, G. &Weber, K. (1984) The intermediate filament complement of the retina: a comparison between different mammalian species.European Journal of Cell Biology 33, 95–104.

    PubMed  Google Scholar 

  • Trojanowski, J. Q., Obrocka, M. A. &Lee, V. M. Y. (1985) Immunohistochemical studies of bovine cerebellum with subunit-specific monoclonal antibodies.Journal of Histochemistry and Cytochemistry 33, 557–63.

    PubMed  Google Scholar 

  • Ueda, Y., Kaneko, A. &Kaneda, M. (1992) Voltage-dependent ionic currents in solitary horizontal cells isolated from cat retina.Journal of Neurophysiology 68, 1143–50.

    PubMed  Google Scholar 

  • Vaney, D. I. (1993) The coupling pattern of axon-bearing horizontal cells in the mammalian retina.Proceedings of the Royal Society of London, Series B 252, 93–101.

    Google Scholar 

  • Vaney, D. I., Peichl, L. &Boycott, B. B. (1981) Matching populations of amacrine cells in the inner nuclear and ganglion cell layers of the rabbit retina.Journal of Comparative Neurology 199, 373–91.

    Google Scholar 

  • Vickers, J. C. &Costa, M. (1992) The neurofilament triplet is present in distinct subpopulations of neurons in the central nervous system of the guinea-pig.Neuroscience 49, 73–100.

    PubMed  Google Scholar 

  • Wässle, H., Peichl, L. &Boycott, B. B. (1978) Topography of horizontal cells in the retina of the domestic cat.Proceedings of the Royal Society of London, Series B 203, 269–91.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Löhrke, S., Brandstätter, J.H., Boycott, B.B. et al. Expression of neurofilament proteins by horizontal cells in the rabbit retina varies with retinal location. J Neurocytol 24, 283–300 (1995). https://doi.org/10.1007/BF01186541

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01186541

Keywords

Navigation