Skip to main content
Log in

Relation between axons and oligodendroglial cells during initial myelination I. The glial unit

  • Published:
Journal of Neurocytology

Summary

The morphology of oligodendroglial-axon units was examined by electron microscopy during ensheathment and initial myelination in developing feline spinal cord and corpus callosum white matter. In addition to a qualitative examination of single sections from many stages of development, a morphological analysis of spinal cord and corpus callosum units was made on the basis of serial sections from a few stages. The results show that myelination commences around embryonic/fetal day 40 and the 20th postnatal day in the spinal cord and corpus callosum areas, respectively. In both areas immature glial cells, lacking the cytological features of typical oligodendrocytes, initially associate with several axons and provide them with cytoplasmic sheaths. Serial section analysis of units, which have begun formation of compact myelin, indicates that individual cells are associated with single myelin sheaths in the spinal cord area, in a way principally similar to the Schwann cell-myelin units in developing peripheral nerves. This suggests the possibility that early spinal cord oligodendrocytes might shift from a polyaxonal to a monoaxonal association after initial ensheathment and before formation of compact myelin. In the corpus callosum area the examined serially-sectioned cells were found to be connected to several myelin sheaths through long thin processes. The myelin sheaths related to one cell are relatively uniform in terms of number of myelin lamellae and axon diameter, but the clockwise/counter-clockwise course of the myelin spiral varies randomly. Units containing both homogeneously uncompacted (cytoplasmic) and fully compacted (myelin) sheaths have not been found. In both areas the ensheathing cells achieve an oligodendrocyte-like cytology during formation of the first layers of compact myelin. These observations support the view that oligodendrocytes are structurally heterogeneous: those myelinating prospective large axons seem to differ from those myelinating axons destined to remain small. The possible functional and pathophysiological implications of this heterogeneity remain to be elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amaducci, L., Pazzaglia, A. &Pessina, G. (1962) The relation of proteolipids and phosphatidopeptides to tissue elements in the bovine nervous system.Journal of Neurochemistry 9, 509–18.

    PubMed  Google Scholar 

  • Berbel, P. &Innocenti, G. M. (1988) The development of the corpus callosum in cats: A light- and electronmicroscopical study.Journal of Comparative Neurology 276, 132–56.

    PubMed  Google Scholar 

  • Berthold, C.-H. (1968) A study on the fixation of large mature feline myelinated ventral lumbar spinal-root fibres.Acta Societatis Medicorum Upsaliensis 73 (Supplement 9), 1–36.

    Google Scholar 

  • Blakemorf, W. F. (1981) Observations on myelination and remyelination in the central nervous system. InDevelopment in the Nervous System (edited byGarrod, P. R. &Ffldman, J. D.) pp. 289–308. Cambridge: Cambridge University Press.

    Google Scholar 

  • Blakemore, W. F. (1982) Myelination, demyelination and remyelination in the CNS. InRecent Advances in Neuropathology (edited bySmith, W. T. &Cavanagh, J. B.) pp. 53–82. Edinburgh: Churchill Livingstone.

    Google Scholar 

  • Blunt, M. J., Baldwin, F. &Wendell-Smith, C. P. (1972) Gliogenesis and myelination in kitten optic nerve.Zeitschrift für Zellforschung und mikroskopische Anatomie 124, 293–310.

    Google Scholar 

  • Bunge, R. P. (1968) Glial cells and the central myelin sheath.Physiological Reviews 48, 197–251.

    PubMed  Google Scholar 

  • Corneliuson, O., Berthold, C.-H., Fabricius, C., Gatzinsky, K. &Carlstedt, T. (1989) Marchi-positive myelinoid bodies at the transition between the central and the peripheral nervous system in some vertebrates.Journal of Anatomy (London)163, 17–31.

    Google Scholar 

  • Corneliuson, O., Berthold, C.-H., Persson, H. &Fredman, P. (1988) Aspects on the protein and the lipid composition of myelinoid Marchi-positive bodies from mammalian spinal cord.Neurochemical Research 13, 1149–56.

    PubMed  Google Scholar 

  • Del Rio-Hortega, P. (1928) Tercera aportación al conocimiento morfológico e interpretación funcional de la oligodendroglia.Memorias De La Real Sociedad Española De Historia Natural 14, 40–122.

    Google Scholar 

  • Fleischhauer, K. &Schlüter, G. (1970) Über das postnatale Wachstum des Corpus callosum der Katze (Felis domestica).Zeitschrift für Anatomie und Entwicklungs-Geschichte 132, 228–39.

    Google Scholar 

  • Fleischhauer, K. &Wartenberg, H. (1967) Elektron-mikroskopische Untersuchungen über das Wachstum der Nervenfasern und über das Auftreton von Markscheiden im Corpus callosum der Katze.Zeitschrift für Zellforschung und mikroskopische Anatomie 83, 568–81.

    Google Scholar 

  • Ghandour, M. S. &Skoff, R. P. (1988) Expression of galactocerebroside in developing normal and jimpy oligodendrocytesin situ.Journal of Neurocytology 17, 485–98.

    Google Scholar 

  • Hardesty, I. (1905) On the occurrence of sheath cells and the nature of the axone sheaths in the central nervous system.American Journal of Anatomy 4, 329–54.

    Google Scholar 

  • Hartman, B. K., Agrawal, H. C., Agrawal, D. &Kalmbach, S. (1982) Development and maturation of central nervous system myelin: Comparison of immunohistochemical localization of proteolipid protein and basic protein in myelin and oligodendrocytes.Proceedings of the National Academy of Sciences (USA)79, 4217–20.

    Google Scholar 

  • Hess, A. &Young, J. Z. (1952) The nodes of Ranvier.Proceedings of the Royal Society of London Series B 140, 301–20.

    Google Scholar 

  • Hildebrand, C. (1971) Ultrastructural and light-microscopic studies of the nodal region in large myelinated fibres of the adult feline spinal cord white matter.Acta Physiologica Scandinavica (suppl.)364, 43–78.

    Google Scholar 

  • Hildebrand, C. (1972) Evidence for a correlation between myelin period and number of myelin lamellae in fibres of the feline spinal cord white matter.Journal of Neurocytology 1, 223–32.

    PubMed  Google Scholar 

  • Hildebrand, C. (1977) Presence of Marchi-positive myelinoid bodies in the spinal cord white matter of some vertebrate species.Journal of Morphology 153, 1–22.

    PubMed  Google Scholar 

  • Hildebrand, C. (1982) Electron-microscopic identification of Gomori-positive rings in normal spinal cord white matter.Acta Neuropathologica (Berlin)56, 29–34.

    Google Scholar 

  • Hildebrand, C. &Hahn, R. (1978) Relation between myelin sheath thickness and axon size in spinal cord white matter of some vertebrate species.Journal of the Neurological Sciences 38, 421–34.

    PubMed  Google Scholar 

  • Hildebrand, C. &Müller, H. (1974) Low-angle X-ray diffraction studies on the period of central myelin sheaths during preparation for electron microscopy. A comparison between different anatomical areas.Neurobiology 4, 71–81.

    PubMed  Google Scholar 

  • Hildebrand, C. &Skoglund, S. (1971a) Histochemical studies of adult and developing feline spinal cord white matter.Acta Physiologien Scandinavian (Supplement)364, 145–73.

    Google Scholar 

  • Hildebrand, C. &Skoglund, S. (1971b) Calibre spectra of some fibre tracts in the feline central nervous system during postnatal development.Acta Physiologica Scandinavica (Supplement)364, 5–41.

    Google Scholar 

  • Jenq, C.-B., Chung, K. &Coggeshall, R. E. (1986) Postnatal loss of axons in normal rat sciatic nerve.Journal of Comparative Neurology 244, 445–50.

    PubMed  Google Scholar 

  • Korn, G. A. &Korn, T. M. (1961) InMathematical Handbook for Scientists and Engineers. New York, Toronto and London: McGraw-Hill Book Company Inc.

    Google Scholar 

  • Kruger, L. &Maxwell, D. S. (1966) Electron microscopy of oligodendrocytes in normal rat cerebrum.American Journal of Anatomy 118, 411–36.

    PubMed  Google Scholar 

  • Ludwin, S. K. (1978) Central nervous system demyelination and remyelination in the mouse: An ultrastructural study of cuprizone toxicity.Laboratory Investigation 39, 597–612.

    PubMed  Google Scholar 

  • Ludwin, S. K. &Bakker, D. A. (1988) Can oligodendrocytes attached to myelin proliferate?Journal of Neuroscience 8, 1239–44.

    PubMed  Google Scholar 

  • Matthews, M. A. &Duncan, D. (1971) A quantitative study of morphological changes accompanying the initiation and progress of myelin production in the dorsal funiculus of the rat spinal cord.Journal of Comparative Neurology 142, 1–22.

    PubMed  Google Scholar 

  • Mehl, E. &Wolfgram, F. (1969) Myelin types with different protein components in the same species.Journal of Neurochemistry 16, 1091–7.

    PubMed  Google Scholar 

  • Mori, S. &Leblond, C. P. (1970) Electron microscopic identification of three classes of oligodendrocytes and a preliminary study of their proliferative activity in the corpus callosum of young rats.Journal of Comparative Neurology 139, 1–30.

    PubMed  Google Scholar 

  • Norton, W. T. &Cammer, W. (1984) Isolation and characterization of myelin. InMyelin (edited byMorell, P.) 2nd ed, pp. 147–95. New York and London: Plenum Press.

    Google Scholar 

  • Ogawa, Y., Eins, S. &Wolff, J. R. (1985) Oligodendrocytes in the pons and middle cerebellar peduncle of the cat. Topographical relations to neurons and transverse axon bundles:Cell and Tissue Research 240, 541–52.

    PubMed  Google Scholar 

  • Penfield, W. (1932) Neuroglia: Normal and pathological. InCytology and Cellular Pathology of the Nervous System. Vol. 2, pp. 423–79. New York: Hoeber.

    Google Scholar 

  • Peters, A. (1964) Observations on the connexions between myelin sheaths and glial cells in the optic nerves of young rats.Journal of Anatomy (London)98, 125–34.

    Google Scholar 

  • Peters, A. &Proskauer, C. (1969) The ratio between myelin segments and oligodendrocytes in the optic nerve of the adult rat.Anatomical Record 163, 243.

    Google Scholar 

  • Peters, A., Palay, S. L. &Webster, H. DeF. (1976)The Fine Structure of the Nervous System: The Neurons and the Supporting Cells, pp. 284–54. Philadelphia: W. B. Saunders.

    Google Scholar 

  • Plenk, H. (1934) Die Schwannsche Scheide der markhaltigen Nervenfasern.Zeitschrift für mikroskopische-anatomische Forschung 36, 191–214.

    Google Scholar 

  • Privat, A. (1975) Postnatal gliogenesis in the mammalian brain. InInternational Review of Cytology (edited byBourne, G. H. &Danielli, J. F.) pp. 281–323. New York, San Francisco and London: Academic Press.

    Google Scholar 

  • Raine, C. S. (1984) Morphology of myelin and myelination. InMyelin (edited byMorell, P.) 2nd ed, pp. 1–50. New York and London: Plenum Press.

    Google Scholar 

  • Remahl, S. &Hildebrand, C. (1982) Changing relation between onset of myelination and axon diameter range in developing feline white matter.Journal of the Neurological Sciences 54, 33–45.

    PubMed  Google Scholar 

  • Remahl, S. &Hildebrand, C. (1985) Axo-glial relations during initial myelination.Neuroscience Letters (Supplement)22, S362.

    Google Scholar 

  • Remahl, S. &Hildebrand, C. (1990) Relations between axons and oligodendroglial cells during initial myelination. II. The individual axon.Journal of Neurocytology (in press).

  • Remahl, S., Risling, M. &Hildebrand, C. (1977) Age-related changes in occurrence of Marchi-positive myelinoid bodies in postnatally developing feline white matter.Journal of the Neurological Sciences 34, 71–86.

    PubMed  Google Scholar 

  • Richards, W., Kalil, R. &Moore, C. L. (1983) An observation about myelination.Experimental Brain Research 52, 219–25.

    Google Scholar 

  • Skoff, R. P., Price, D. L. &Stocks, A. (1976a) Electron microscopic autoradiographic studies of gliogenesis in rat optic nerve I. Cell proliferation.Journal of Comparative Neurology 169, 291–312.

    PubMed  Google Scholar 

  • Skoff, R. P., Price, D. L. &Stocks, A. (1976b) Electron microscopic autoradiographic studies of gliogenesis in rat optic nerve II. Time of origin.Journal of Comparative Neurology 169, 313–34.

    PubMed  Google Scholar 

  • Stensaas, L. J. &Stensaas, S. S. (1968a) Astrocytic neuroglial cells, oligodendrocytes and microgliacytes in the spinal cord of the toad. I. Light microscopy.Zeitschrift für Zellforschung und mikroskopische Anatomie 84, 473–89.

    Google Scholar 

  • Stensaas, L. J. &Stensaas, S. S. (1968b) Astrocytic neuroglial cells, oligodendrocytes and microgliacytes in the spinal cord of the toad. II. Electron microscopy.Zeitschrift für Zellforschung und mikroskopische Anatomie 86, 184–213.

    Google Scholar 

  • Sternberger, N. H., Itoyama, Y., Kies, M. W. &Webster, H. DeF. (1978a) Immunocytochemical method to identify basic protein in myelin-forming oligodendrocytes of newborn rat CNS.Journal of Neurocytology 7, 251–63.

    PubMed  Google Scholar 

  • Sternberger, N. H., Itoyama, Y., Kies, M. W. &Webster, H. DeF. (1978b) Myelin basic protein demonstrated immunocytochemically in oligodendroglia prior to myelin sheath formation.Proceedings of the National Academy of Sciences (USA) 75, 2521–4.

    Google Scholar 

  • Sternberger, N. H., Quarles, R. H., Itoyama, Y. &Webster, H. DeF. (1979) Myelin-associated glycoprotein demonstrated immunocytochemically in myelin and myelin-forming cells of developing rats.Proceedings of the National Academy of Sciences (USA)76, 1510–14.

    Google Scholar 

  • Vaughn, J. E. (1969) An electron microscopic analysis of gliogenesis in the rat optic nerve.Zeitschrift für Zellforschung und mikroskopische Anatomie 94, 293–324.

    Google Scholar 

  • Waxman, S. G. &Sims, T. J. (1984) Specificity in central myelination: evidence for local regulation of myelin thickness.Brain Research 292, 179–85.

    PubMed  Google Scholar 

  • Webster, H. DeF. &Favilla, J. T. (1984) Development of peripheral nerve fibres. InPeripheral Neuropathy (edited byDyck, P. J., Thomas, P. K., Lambert, E. H. &Bunge, R. P.) Vol. 1, 2nd ed, pp. 329–59. Philadelphia: W. B. Saunders.

    Google Scholar 

  • Wolfgram, F. &Kotorii, K. (1968) The composition of myelin proteins of the central nervous system.Journal of Neurochemistry 15, 1281–90.

    Google Scholar 

  • Wood, P. M. &Bunge, R. P. (1984) The biology of the oligodendrocyte. InOligodendroglia (edited byNorton, W. T.) Advances in Neurochemistry, Vol. 5, pp. 1–45. New York and London: Plenum Press.

    Google Scholar 

  • Wood, P. M. &Bunge, R. P. (1986) Evidence that axons are mitogenic for oligodendrocytes isolated from adult animals.Nature 320, 756–8.

    PubMed  Google Scholar 

  • Yacob, A. &Kunz, Y. W. (1977) ‘Disk shedding’ in the cone outer segments of the Teleost,Poecilia reticulata P. Cell and Tissue Research 181, 487–92.

    Google Scholar 

  • Young, R. W. (1976) Visual cells and the concept of renewal.Investigative Ophthalmology 15, 700–25.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Remahl, S., Hildebrand, C. Relation between axons and oligodendroglial cells during initial myelination I. The glial unit. J Neurocytol 19, 313–328 (1990). https://doi.org/10.1007/BF01188401

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01188401

Keywords

Navigation