Skip to main content
Log in

Characterization of GABAergic neurons in hippocampal cell cultures

Journal of Neurocytology

Summary

The morphological characteristics of GABAergic neurons and the distribution of GABAergic synaptic terminals were examined in cultures of hippocampal neurons from 4–35 daysin vitro. Neurons expressing GABA immunoreactivity represented about 6% of the total number of cultured neurons at all time points. Although the morphological characteristics of GABAergic cells suggested a heterogeneous population, GABAergic cells as a class were notably different from the non-GABAergic, presumably pyramidal cells. Most GABAergic cells had more fusiform or polygonal shaped somata, non-spiny and less tapering dendrites and appeared more phase-dense than nonGABAergic cells. Quantitative analysis revealed that GABAergic cells had fewer primary dendrites, more elongated dendritic arbors, and longer dendritic segments than non-GABAergic neurons-characteristics that are similar to GABAergic cellsin situ. Double immunostaining revealed that GAD65-positive varicosities were also immunopositive for synapsin I, suggesting that GAD65-positive varicosities that contacted somata and dendrites represented presynaptic specializations. Confocal microscopy revealed the proportion of the synaptic specializations on the cell soma that were GAD65-positive was greater than on the dendrites, suggesting that somata and dendrites differ in their ability to induce the formation of presynaptic specializations by GABAergic axons. These data indicate that the GABAergic cells that develop in culture exhibit distinctive morphological characteristics and participate in different synaptic interactions than nonGABA cells. Thus many of the features that distinguish GABAergic neurons in culture are reminiscent of the characteristics that distinguish GABAergic neuronsin situ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Abele, A. E., Scholz, K. P., Scholz, W. K. &Miller, R. J. (1990) Excitotoxicity induced by enhanced excitatory neurotransmission in cultured hippocampal pyramidal neurons.Neuron 4, 413–19.

    PubMed  Google Scholar 

  • Amaral, D. G. (1978) A Golgi study of cell types in the hilar region of the hippocampus in the rat.Journal of Comparative Neurology 182, 851–914.

    PubMed  Google Scholar 

  • Bacallo, R., Bomsel, M., Stelzer, E. H. K. &De Mey, J. (1990) Guiding principles of specimen preservation for confocal fluorescence microscopy. In:Handbook of Biological Confocal Microscopy (edited byPawley, J. B.) pp. 197–205. New York: Plenum Press.

    Google Scholar 

  • Bähler, M. &Greengard, P. (1987) Synapsin I bundles F-actin in a phosphorylation-dependent manner.Nature 326, 704–7.

    PubMed  Google Scholar 

  • Banker, G. A. &Waxman, A. B. (1988) Hippocampal neurons generate natural shapes in cell culture. InIntrinsic Determinants of Neuronal Form and Function (edited byLasek, R. J. &Black, M. M.) pp. 61–82. New York: Alan R. Liss, Inc.

    Google Scholar 

  • Bartlett, W. P. &Banker, G. A. (1984) An electron microscopic study of the development of axons and dendrites by hippocampal neurons in culture II. Synaptic relationships.Journal of Neuroscience 4, 1954–65.

    PubMed  Google Scholar 

  • Bekkers, J. M. &Stevens, C. F. (1990) A presynaptic mechanism for long-term potentiation in the hippocampus.Nature 346, 724–9.

    PubMed  Google Scholar 

  • Binder, L. I., Frankfurter, A., Rebhun, L. I. (1986) Differential localization of MAP2 and tau in mammalian neuronsin situ.Annals of the New York Academy of Sciences 466, 145–67.

    PubMed  Google Scholar 

  • Boss, B. D., Turlejski, K., Stanfield, B. B. &Cowan, W. M. (1987) On the numbers of neurons in fields CA1 and CA3 of the hippocampus of Sprague-Dawley and Wistar rats.Brain Research 406, 280–7.

    PubMed  Google Scholar 

  • Bottenstein, J. E. &Sato, G. E. (1979) Growth of a rat neuroblastoma cell line in serum-free supplemented medium.Proceedings of the National Academy of Sciences (USA) 76, 514–19.

    Google Scholar 

  • Buchhalter, J. R. &Dichter, M. A. (1991) Electrophysiological comparison of pyramidal and stellate nonpyramidal neurons in dissociated cell culture of rat hippocampus.Brain Research Bulletin 26, 333–8.

    PubMed  Google Scholar 

  • Cajal, S. R. Y. (1911)Histologie du Systéme Nerveux de l'Homme et des Vértébrés. Paris: Maloine.

    Google Scholar 

  • Chang, Y. &Gottlieb, D. I. (1988) Characterization of the proteins purified with monoclonal antibodies to glutamic acid decarboxylase.Journal of Neuroscience 8, 2123–30.

    PubMed  Google Scholar 

  • Constantine-Paton, M., Cline, H. T. &Debski, E. (1990) Patterned activity, synaptic convergence and the NMDA receptor in developing visual pathways.Annual Review of Neuroscience 13, 129–54.

    PubMed  Google Scholar 

  • Craig, A. M., Blackstone, C. D., Huganir, R. L. &Banker, G. (1993) The distribution of glutamate receptors in cultured rat hippocampal neurons: postsynaptic clustering of AMPA-selective subunits.Neuron 10, 1055–68.

    PubMed  Google Scholar 

  • Davis, L., Banker, G. A. &Steward, O. (1987) Selective dendritic transport of RNA in hippocampal neurons in culture.Nature 330, 447–79.

    Google Scholar 

  • Decamilli, P., Harris, S. M., Huttner, W. B. &Greengard, P. (1983) Synapsin I (protein 1), a nerve terminal-specific phosphoprotein. I. Its specific association with synaptic vesicles demonstrated by immunocytochemistry in agarose embedded synaptosomes.Journal of Cell Biology 96, 1355–73.

    PubMed  Google Scholar 

  • Denis-Donini, S. &Estenoz, M. (1988) Interneurons versus efferent neurons: heterogeneity in their neurite outgrowth response to glia from several brain regions.Developmental Biology 130, 237–49.

    PubMed  Google Scholar 

  • Dotti, C. G. &Simons, K. (1990) Polarized sorting of viral glycoproteins to the axon and dendrites of hippocampal neurons in culture.Cell 62, 63–72.

    PubMed  Google Scholar 

  • Dubinsky, J. M. (1989) Development of inhibitory synapses among striatal neuronsin vitro.Journal of Neuroscience 9 3955–65.

    PubMed  Google Scholar 

  • Ferreira, A., Caceres, A. &Kosik, K. S. (1993) Intraneuronal compartments of the amyloid precursor protein.Journal of Neuroscience 13, 3112–23.

    PubMed  Google Scholar 

  • Fletcher, T. L., Cameron, P., De Camilli, P. &Banker, G. (1991) The distribution of synapsin I and synaptophysin in hippocampal neurons developing in culture.Journal of Neuroscience 11, 1617–26.

    PubMed  Google Scholar 

  • Freund, T. F., Martin, K. A. C., Smith, A. D. &Somogyi, P. (1983) Glutamate decarboxylase-immunoreactive terminals of Golgi-impregnated axoaxonic cells and of presumed basket cells in synaptic contact with pyramidal neurons of the cat's visual cortex.Journal of Comparative Neurology 221, 263–78.

    PubMed  Google Scholar 

  • Frotscher, M. &Zimmer, J. (1987) GABAergic nonpyramidal neurons in intracerebral transplants of the rat hippocampus and fascia dentata: a combined light and electron microscopic and immunocytochemical study.Journal of Comparative Neurology 259, 266–76.

    PubMed  Google Scholar 

  • Gamrani, H., Onteniente, B., Seguela, P., Geffard, M. &Calas, A. (1986) Gamma-aminobutyric acid-immunoreactivity in the rat hippocampus, a light and electron microscopic study with anti-GABA antibodies.Brain Research 364, 30–8.

    PubMed  Google Scholar 

  • Goslin, K. &Banker, G. (1991) Rat hippocampal neurons in low density culture. InCulturing Nerve Cells (edited byBanker, G. &Goslin, K.) pp. 251–82. Cambridge: MIT Press.

    Google Scholar 

  • Goslin, K., Schreyer, D. J., Skene, J. H. P. &Banker, G. A. (1988) Development of neuronal polarity: GAP-43 distinguishes axonal from dendritic growth cones.Nature 336, 672–4.

    PubMed  Google Scholar 

  • Gottlieb, D. I. &Cowan, W. M. (1972) On the distribution of axonal terminals containing spheroidal and flattened synaptic vesicles in the hippocampus and dentate gyrus of the rat and cat.Zeitschrift für Zellforschung 129, 413–29.

    Google Scholar 

  • GulyÁs, A. I., Toth, K., Danos, P. &Freund, T. F. (1991) Subpopulations of GABAergic neurons containing parvalbumin, calbindin D28K, and cholecystokinin in the rat hippocampus.Journal of Comparative Neurology 312, 371–8.

    PubMed  Google Scholar 

  • Hoch, D. B. &Dingledine, R. (1986) GABAergic neurons in rat hippocampal culture.Developmental Brain Research 25, 53–64.

    Google Scholar 

  • Jones, E. G. (1981) Anatomy of cerebral cortex: columnar input-output organization. InThe Organization of the Cerebral Cortex (edited bySchmitt, F. O., Worden, F. G., Adelman, G. &Dennis, S. G.) pp. 199–235. Cambridge, MA: MIT Press.

    Google Scholar 

  • Kaufman, D. L., Houser, C. R. &Tobin, A. J. (1991) Two forms of the γ-aminobutyric acid synthetic enzyme glutamate decarboxylase have distinct intraneuronal distributions and cofactor interactions.Journal of Neurochemistry 56, 720–3.

    PubMed  Google Scholar 

  • Kleiman, R., Banker, G. &Steward, O. (1990) Differential subcellular localization of particular mRNAs in hippocampal neurons in culture.Neuron 5, 821–30.

    PubMed  Google Scholar 

  • Kriegstein, A. R. &Dichter, M. A. (1983) Morphological classification of rat cortical neurons in cell culture.Journal of Neuroscience 3, 1634–47.

    PubMed  Google Scholar 

  • Kosaka, T. (1980) The axon initial segment as a synaptic site: ultrastructure and synaptology of the initial segment of the pyramidal cell in the rat hippocampus (CA3 region).Journal of Neurocytology 9, 861–82.

    Google Scholar 

  • Laurberg, S. &Hjorth-Simonsen, A. (1977) Growing central axons deprived of normal target neurones by neonatal X-ray irradiation still terminate in a precisely laminated fashion.Nature 269, 158–60.

    PubMed  Google Scholar 

  • Legido, A., Reichlin, S., Dichter, M. A. &Buchhalter, J. (1990) Expression of somatostatin and GABA immunoreactivity in cultures of rat hippocampus.Peptides 11, 103–9.

    PubMed  Google Scholar 

  • Li, X.-G., Somogyi, P., Tepper, J. M. &BuzÁki, G. (1992) Axonal and dendritic arborization of an intracellularly labeled chandelier cell in the CA1 region of rat hippocampus.Experimental Brain Research 90, 519–25.

    Google Scholar 

  • Lorente Denó, R. (1934) Studies on the structure of the cerebral cortex. II. Continuation of the study of the Ammonic system.Journal für Psychologie und Neurologie 46, 113–77.

    Google Scholar 

  • Mainland, D., Herrera, L. &Sutcliff, M. I. (1956)Tables for use with binomial samples. Department of Medical Statistics. New York University College of Medicine.

  • Meinecke, D. L. &Peters, A. (1987) GABA immunoreactive neurons in rat visual cortex.Journal of Comparative Neurology 261, 388–404.

    PubMed  Google Scholar 

  • Miettinen, R., GulyÁs, A. I., Baimbridge, K. G., Jacobowitz, D. M. &Freund, T. F. (1992) Calretinin is present in non-pyramidal cells of the rat hippocampus. II. Co-existence with other calcium binding proteins and GABA.Neuroscience 48, 29–43.

    PubMed  Google Scholar 

  • Nitsch, R., Bergmann, I., Kuppers, K., Mueller, G. &Frotscher, M. (1990) Late appearance of parvalbumin immunoreactivity in the development of GABAergic neurons in the rat hippocampus.Neuroscience Letters 118, 147–50.

    PubMed  Google Scholar 

  • Petrucci, T. C. &Morrow, J. S. (1987) Synapsin I: an actin-bundling protein under phosphorylation control.Journal of Cell Biology 105, 1355–63.

    PubMed  Google Scholar 

  • Plaschke, M., Nitsch, R., Wenzel, J. &Frotscher, M. (1992) Parvalbumin-containing nonpyramidal neurons in intracortical transplants of rat hippocampal and neocortical tissue: a light and electron microscopic immunocytochemical study.Journal of Comparative Neurology 319, 319–36.

    PubMed  Google Scholar 

  • Price, J. L., Moxley, G. F. &Schwob, J. E. (1976) Development and plasticity of complementary afferent fiber systems to the olfactory cortex.Experimental Brain Research Supplement 1, 148–54.

    Google Scholar 

  • Rakic, P. (1981) Developmental events leading to the laminar and areal organization of the neocortex. InThe Organization of the Cerebral Cortex (edited bySchmitt, F. O., Worden, F. G., Adelman, G. &Dennis, S. G.) pp. 7–28. Cambridge, MA: MIT Press.

    Google Scholar 

  • Ribak, C. E., Vaughn, J. E. &Saito, K. (1978) Immunocytochemical localization of glutamic acid decarboxylase in neuronal somata following colchicine inhibition of axonal transport.Brain Research 140, 315–32.

    PubMed  Google Scholar 

  • Ribak, C. E., Vaughn, J. E. &Barber, R. P. (1981) Immunocytochemical localization of GABAergic neurones at the electron microscopical level.Histochemical Journal 13, 555–82.

    PubMed  Google Scholar 

  • Ribak, C. E., Nitsch, R. &Seress, L. (1990) Proportion of parvalbumin-positive basket cells in the GABAergic innervation of pyramidal and granule cells of the rat hippocampal formation.Journal of Comparative Neurology 300, 449–61.

    PubMed  Google Scholar 

  • Schlessinger, A. R., Cowan, W. M. &Swanson, L. W. (1978) The time of origin of neurons in Ammon's horn and the associated retrohippocampal fields.Anatomy and Embryology 154, 153–73.

    PubMed  Google Scholar 

  • Schwartzkroin, P. A. &Mathers, L. H. (1978) Physiological and morphological identification of a nonpyramical hippocampal cell type.Brain Research 137, 1–10.

    Google Scholar 

  • Schwartzkroin, P. A. &Kunkel, D. D. (1985) Morphology of identified interneurons in the CA1 regions of guinea pig hippocampus.Journal of Comparative Neurology 232, 205–18.

    PubMed  Google Scholar 

  • Shatz, C. J., Ghosh, A., Mcconnell, S. K., Allendoerfer, K. L., Friaf, E. &Antonini, A. (1990) Pioneer neurons and target selection in cerebral cortical development.Cold Spring Harbor Symposium on Quantitative Biology 55, 469–80.

    Google Scholar 

  • Steward, O. (1976) Topographic organization of the projections from the entorhinal area of the hippocampal formation of the rat.Journal of Comparative Neurology 167, 285–314.

    PubMed  Google Scholar 

  • Stichel, C. C. &Müller, H. W. (1991) Dissociated cell culture of rat cerebral cortical neurons in serum-free, conditioned media: GABA-immunopositive neurons.Developmental Brain Research 64, 145–54.

    PubMed  Google Scholar 

  • Stichel, C. C. &Müller, H. W. (1992) Expression of inherent neuronal shape characteristics after transient sensitivity to epigenetic factors.Developmental Brain Research 68, 149–62.

    PubMed  Google Scholar 

  • Streit, P., Thompson, S. M. &Gähwiler, B. (1989) Anatomical and physiological properties of GABAergic neurotransmission in organotypic slice cultures of rat hippocampus.European Journal of Neuroscience 1, 603–15.

    PubMed  Google Scholar 

  • Tiedge, H., Banker, G. A. &Brosius, J. (1991) Expression of BC1 RNA in developing hippocampal neurons in culture.Society for Neuroscience Abstracts 17, 539.

    Google Scholar 

  • Udin, S. B. &Fawcett, J. W. (1990) Formation of topographic maps.Annual Review of Neuroscience 11, 289–97.

    Google Scholar 

  • Walker, C. &Peacock, J. (1982) Development of GABAergic function of dissociated hippocampal cultures from fetal mice.Developmental Brain Research 2, 541–55.

    Google Scholar 

  • Woodson, W., Nitecka, L. &Ben-ari, Y. (1989) Organization of the GABAergic system in the rat hippocampal formation: a quantitative immunocytochemical study.Journal of Comparative Neurology 280, 254–71.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benson, D.L., Watkins, F.H., Steward, O. et al. Characterization of GABAergic neurons in hippocampal cell cultures. J Neurocytol 23, 279–295 (1994). https://doi.org/10.1007/BF01188497

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01188497

Keywords

Navigation