Skip to main content
Log in

Acid phosphatase activity at nodes of Ranvier in alpha-motor and dorsal root ganglion neurons of the cat

Journal of Neurocytology

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Summary

Acid phosphatase (AcPase) activity in feline alpha-motor and dorsal root ganglion (DRG) neurons was analysed histochemically by light and electron microscopy. The occurrence and distribution of the AcPase activity expressed within the axon differed depending on neuron type and distance from the cell body. Both in alpha-motor and DRG neurons, AcPase-positive bodies of various morphological categories were observed mainly at nodes of Ranvier, where they were more frequent distal than proximal to the nodal midlevel. In the peripherally located processes of both neuron types, most of the larger AcPase-positive bodies were associated with the paranodal axon-Schwann cell network. In the centrally located processes the AcPase-positive bodies were situated in the constricted axon segment and the adjacent paranodal axoplasm. Both in motor and DRG axons, AcPase-positive bodies were more frequent at the spinal root level than at a level central to the PNS-CNS borderline.

The observations indicate that lysosomes (i.e. AcPase-positive bodies) constitute part of the intra-axonal system of organelles in normal, large, myelinated alpha-motor and DRG axons of the cat. Lysosome-mediated degradation of retrogradely transported endogenous and exogenous materials may be extensive in normal peripherally directed neuronal processes. The study also suggests a difference between PNS and CNS parts of the same axon with regard to the local turnover of lysosomal organelles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Allen, R. D. (1987) The microtubule as an intracellular engine.Scientific American 256, 26–33.

    Google Scholar 

  • Bainton, D. F. (1981) The discovery of lysosomes.Journal of Cell Biology 91, 66–76.

    Google Scholar 

  • Berthold, C.-H. (1968) Ultrastructure of the nodeparanode region of mature feline ventral lumbar spinal-root fibres.Acta Societatis Medicorum Upsaliensis 73, Suppl. 9, 37–78.

    PubMed  Google Scholar 

  • Berthold, C.-H. (1982) Some aspects of the ultrastructural organization of peripheral myelinated axons in the cat. InAxoplasmic Transport (edited byWeiss, D. G.), pp. 40–54. Berlin: Springer Verlag.

    Google Scholar 

  • Berthold, C.-H., Corneliuson, O. &Mellström, A. (1986) Peroxidase activity at nodes of Ranvier in lumbosacral ventral spinal roots and in the PNS-CNS transitional region after intramuscular administration of horseradish peroxidase.Journal of Neurocytology 15, 253–60.

    PubMed  Google Scholar 

  • Berthold, C.-H., Corneliuson, O. &Mellström, A. (1988) Peroxidase activity at CNS nodes of Ranvier and in initial axon segments of lumbosacral alph-amotoneurons after intramuscular administration of horseradish peroxidase.Brain Research (in press).

  • Berthold, C.-H. &Mellström, A. (1982) Distribution of peroxidase activity at nodes of Ranvier after intramuscular injection of horseradish peroxidase in the cat.Neuroscience 7, 45–54.

    PubMed  Google Scholar 

  • Berthold, C.-H. &Mellström, A. (1986) Peroxidase activity at consecutive nodes of Ranvier in the nerve to the medial gastrocnemic muscle after intramuscular administration of horseradish peroxidase.Neuroscience 19, 1349–62.

    PubMed  Google Scholar 

  • Boyd, I. A. &Smith, R. S. (1984) The muscle spindle. InPeripheral Neuropathy (edited byDyck, P. J., Thomas, P. K., Lambert, E. &Bunge, R. P.), pp. 171–202. Philadelphia: Saunders.

    Google Scholar 

  • Broadwell, R. D. (1980) Cytochemical localization of acid hydrolases in neurons of the mammalian central nervous system.Journal of Histochemistry and Cytochemistry 28, 87–9.

    PubMed  Google Scholar 

  • Broadwell, R. D. &Balin, B. J. (1985) Endocytic and exocytic pathways of the neuronal secretory process and trans-synaptic transfer of wheat germ agglutininhorseradish peroxidasein vivo.Journal of Comparative Neurology 242, 632–50.

    PubMed  Google Scholar 

  • Broadwell, R. D. &Brightman, M. W. (1976) Entry of peroxidase into neurons of the ventral and peripheral nervous system from extracerebral and cerebral blood.Journal of Comparative Neurology 166, 257–84.

    Google Scholar 

  • Broadwell, R. D. &Brightman, M. W. (1979) Cytochemistry of undamaged neurons transporting exogenous proteinin vivo.Journal of Comparative Neurology 185, 31–74.

    PubMed  Google Scholar 

  • Broadwell, R. D. &Cataldo, A. M. (1984) The neuronal endoplasmic reticulum: its cytochemistry and contribution to the endomembrane system. II. Axons and terminals.Journal of Comparative Neurology 230, 231–48.

    PubMed  Google Scholar 

  • Broadwell, R. D., Oliver, C. &Brightman, M. W. (1980) Neuronal transport of acid hydrolases and peroxidase within the lysosomal system of organelles: involvement of agranular reticulum-like cisterns.Journal of Comparative Neurology 190, 519–32.

    PubMed  Google Scholar 

  • Cooper, P. D. &Smith, R. S. (1974) The movement of optically detectable organelles in myelinated axons of Xenopus laevis.Journal of Physiology (Lond.) 242, 77–97.

    Google Scholar 

  • De Duve, C. &Wattiaux, R. (1966) Functions of lysosomes.Annual Review of Physiology 28, 435–92.

    PubMed  Google Scholar 

  • Evans, J. A. &Holtzman, E. (1982) Thiamine pyrophosphatase localization in neuronal axons and terminals.Journal of Histochemistry and Cytochemistry 30, 489–90.

    PubMed  Google Scholar 

  • Fabricius, C., Rydmark, M. &Berthold, C.-H. (1986) A morphometric study of myelinated nerve fibres of the intrafunicular part of cat motorneurons.Archives de Biologie 97, S42 (abstract).

    Google Scholar 

  • Fink, D. J., Purkiss, D. &Mata, M. (1987) Retrograde axonal transport in rat sciatic nerve after nerve crush injury.Brain Research Bulletin 19, 29–33.

    PubMed  Google Scholar 

  • Gatzinsky, K. &Berthold, C.-H. (1987) Differences in the distribution of acid phosphatase activity between PNS and CNS node-paranode segments of cat alpha motor axons.Neuroscience 22, S789 (abstract).

    Google Scholar 

  • Gomori, G. (1952)Microscopic Histochemistry, Principles and Practice. Chicago: University of Chicago Press.

    Google Scholar 

  • Gordon, M. K., Bench, K. G., Deanin, G. G. &Gordon, M. W. (1968) Histochemical and biochemical study of synaptic lysosomes.Nature 217, 523–7.

    PubMed  Google Scholar 

  • Grafstein, B. &Forman, D. S. (1980) Intracellular transport in neurons.Physiological Reviews 60, 1167–283.

    PubMed  Google Scholar 

  • Gross, G. W. &Beidler, L. M. (1975) A quantitative analysis of isotope concentration profiles and rapid transport velocities in the C-fibres of the garfish olfactory nerve.Journal of Neurobiology 6, 213–32.

    PubMed  Google Scholar 

  • Ha, H. (1970) Axonal bifurcation in the dorsal root ganglion of the cat: a light and electron microscopic study.Journal of Comparative Neurology 140, 227–40.

    PubMed  Google Scholar 

  • Hildebrand, C. (1971) Ultrastructural and light-miscroscopic studies of the nodal region in large myelinated fibres of the adult feline spinal cord white matter.Acta Physiologica Scandinavica Suppl.364, 43–79.

    Google Scholar 

  • Holtzman, E. (1969) Lysosomes in the physiology and pathology of neurons. InLysosomes in Biology and Pathology (edited byDingle, J. T. &Fell, H. B.), Vol. 1, pp. 192–216. Amsterdam: North-Holland Publishing.

    Google Scholar 

  • Holtzman, E. (1971) Cytochemical studies of protein transport in the nervous system.Philosophical Transactions of the Royal Society (Lond.) B261, 407–21.

    Google Scholar 

  • Holtzman, E. (1976) Lysosomes: a survey. InCell Biology Monographs (edited byAlfert, M., Beerman, W., Rudkin, G., Sandritter, W. &Sitte, P.), Vol. 3. Wien/NewYork: Springer Verlag.

    Google Scholar 

  • Holtzman, E. (1977) The origin and fate of secretory packages, especially synaptic vesicles.Neuroscience 2, 327–55.

    PubMed  Google Scholar 

  • Holtzman, E. &Novikoff, A. B. (1965) Lysosomes in the rat sciatic nerve following crush.Journal of Cell Biology 27, 651–69.

    PubMed  Google Scholar 

  • Holtzman, E., Teichberg, S., Abrahams, S. J., Citkowitz, E., Crain, S. M., Kawai, N. &Peterson, E. R. (1973) Notes on synaptic vesicles and related structures, endoplasmic reticulum, lysosomes, and peroxisomes in nervous tissue and the adrenal medulla.Journal of Histochemistry and Cytochemistry 21, 349–85.

    PubMed  Google Scholar 

  • Ishise, J. &Rosenbluth, J. (1987) Nodal and paranodal structure during Wallerian degeneration in frog spinal nerve.Brain Research 418, 85–97.

    PubMed  Google Scholar 

  • Koenig, H. (1984) Lysosomes. InHandbook of Neurochemistry (edited byLajtha, A.), Vol. 7, pp. 177–204. New York: Plenum Press.

    Google Scholar 

  • Krikorian, J. G., Guth, L. &Barrett, C. P. (1980) Transport of acid phosphatase in normal and transected rat sciatic nerve.Experimental Neurology 70, 665–74.

    PubMed  Google Scholar 

  • Kristensson, K. (1977) Retrograde axonal transport of horseradish peroxidase. Uptake at mouse neuromuscular junctions following systemic injection.Acta neuropathologica (Berlin) 38, 143–7.

    Google Scholar 

  • Lavail, J. H. &Margolis, T. P. (1987) The anterograde axonal transport of wheat germ agglutinin as a model for transcellular transport in neurons. InNeurology and Neurobiology, Vol. 25.Axonal Transport (edited bySmith, R. S. &Bisby, M. A.), pp. 311–26. New York: Alan R. Liss.

    Google Scholar 

  • Lieberman, A. R. (1976) Sensory ganglia. InThe Peripheral Nerve (edited byLandon, D. N.), pp. 188–278. London: Chapman and Hall.

    Google Scholar 

  • Lubinska, L. (1964) Axoplasmic streaming in regenerating and in normal nerve fibres.Progress in Brain Research 13, 1–71.

    PubMed  Google Scholar 

  • Marks, N., Datta, R. K. &Lajtha, A. (1970) Distribution of amino acids and of exo- and endopeptidases along vertebrate and invertebrate nerves.Journal of Neurochemistry 17, 53–63.

    PubMed  Google Scholar 

  • Mercurio, A. M. &Holtzman, E. (1982) Smooth endoplasmic reticulum and other agranular reticulum in frog retinal photoreceptors.Journal of Neurocytology 11, 263–93.

    PubMed  Google Scholar 

  • Munoz-Martinez, E. J., Nunez, R. &Sanderson, A. (1981) Axonal transport: a quantitative study of retained and transported protein fraction in the cat.Journal of Neurobiology 12, 15–26.

    PubMed  Google Scholar 

  • Novikoff, A. B. (1963) Lysosomes in the physiology and pathology of cells: contributions of staining methods. InCiba Foundation Symposium on Lysosomes (edited byDe Reuck, A. V. S. &Cameron, M. P.), pp. 36–71. Boston: Little, Brown & Co.

    Google Scholar 

  • Novikoff, A. B. (1967) Enzyme localization and ultrastructure of neurons. InThe Neuron (edited byHyden, H.), pp. 255–318. Amsterdam: Elsevier.

    Google Scholar 

  • Novikoff, A. B. (1976) The endoplasmic reticulum: a cytochemist's view (a review).Proceedings of the National Academy of Sciences (USA) 73, 2781–7.

    Google Scholar 

  • Nyström, B. (1968) Fibre diameter increase in nerves to ‘slow-red’ and ‘fast-white’ cat muscles during postnatal development.Acta Neurologica Scandinavica 44, 265–94.

    PubMed  Google Scholar 

  • Ochs, S. (1984) Basic properties of axoplasmic transport. InPeriphral Neuropathy (edited byDyck, P. J., Thomas, P. K., Lambert, E. H. &Bunge, R. P.), pp. 453–76. Philadelphia: Saunders.

    Google Scholar 

  • Ochs, S., Erdman, J., Jersild, R. A., Jr, &Mcadoo, V. (1978) Routing of transported materials in the dorsal root and nerve fiber branches of the dorsal root ganglion.Journal of Neurobiology,9, 465–81.

    PubMed  Google Scholar 

  • Orrego, F. (1971) Protein degradation in squid giant axons.Journal of Neurochemistry 18, 2249–54.

    PubMed  Google Scholar 

  • Rydmark, M. (1981) Nodal axon diameter correlates linearly with internodal axon diameter in spinal roots of the cat.Neuroscience Letters 24, 247–50.

    PubMed  Google Scholar 

  • Schmied, R. &Holtzman, E. (1987) A phosphatase activity and a synaptic vesicle antigen in multivesicular bodies of frog retinal photoreceptor terminals.Journal of Neurocytology 16, 627–37.

    PubMed  Google Scholar 

  • Smith, R. S. (1972) Detection of organelles in myelinated nerve fibres by dark-field microscopy,Canadian Journal of Physiology and Pharmacology 50, 467–9.

    PubMed  Google Scholar 

  • Smith, R. S. (1980) The short term accumulation of axonally transported organelles in the region of localized lesions of single myelinated axons.Journal of Neurocytology 9, 39–65.

    PubMed  Google Scholar 

  • Smith, R. S. (1987) Control of the direction of rapid axonal transport in the vertebrates. InNeurology and Neurobiology, Vol. 25.Axonal Transport (edited bySmith, R. S. &Bisby, M. A.), pp. 139–54. New York: Alan R. Liss.

    Google Scholar 

  • Spencer, P. S. &Schaumburg, H. H. (1984) Experimental models of primary axonal disease induced by toxic chemicals. InPeripheral Neuropathy (edited byDyck, P. J. Thomas, P. K., Lambert, E. H. &Bunge, R. P.), pp. 636–49. Philadelphia: Saunders.

    Google Scholar 

  • Spencer, P. S. &Thomas, P. K. (1974) Ultrastructural studies of the dying-back process. II. The sequestration and removal by Schwann cells and oligodendrocytes of organelles from normal and diseased axons.Journal of Neurocytology 3, 763–83.

    PubMed  Google Scholar 

  • Teichberg, S. &Holtzman, E. (1973) Axonal agranular reticulum and synaptic vesicles in cultured embryonic chick sympathetic neurons.Journal of Cell Biology 57, 88–108.

    PubMed  Google Scholar 

  • Tsukita, S. &Ishikawa, H. (1980) The movement of membranous organelles in axons: electron microscopic identification of anterogradely and retrogradely transported organelles:Journal of Cell Biology 84, 513–30.

    PubMed  Google Scholar 

  • Whitaker, S. &Labella, F. S. (1972) Ultrastructural localization of acid phosphatase in the posterior pituitary of the dehydrated rat.Zeitschrift für Zellforschung 125, 1–15.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gatzinsky, K.P., Berthold, C.H. & Corneliuson, O. Acid phosphatase activity at nodes of Ranvier in alpha-motor and dorsal root ganglion neurons of the cat. J Neurocytol 17, 531–544 (1988). https://doi.org/10.1007/BF01189808

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01189808

Keywords

Navigation