Skip to main content
Log in

Immunocytochemical localization of the sodium, potassium activated ATPase in knifefish brain

Journal of Neurocytology

Summary

Results presented in this paper demonstrate the feasibility of using immunocytochemical methods to localize the (Na+ + K+)-ATPase, and its subunits, in the C.N.S. We have shown that in the Black Ghost knifefish,Sternarchus albifrons, the enzyme is located on the plasma membrane of the somata and dendrites of neurons and on the somata and cellular processes of glia. In myelinated axons the enzyme is restricted in localization to those portions of the axolemma not covered by the myelin sheath. The capacity of cell plasma membranes to restrict mobility of functionally important proteins should be considered in models of membrane structure in which lateral mobility of membrane components is considered a major characteristic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Albers, R.W. (1976) The (Sodium plus Potassium)-Transport ATPase. InThe Enzymes of Biological Membranes (Edited byMartonosi, A.),3, pp. 283–301.

  • Avrameas, S. andTernynck, T. (1971) Peroxidase-labeled antibody and Fab conjugates with enhanced intracellular penetration.Immunochemistry 8, 1175–1179.

    PubMed  Google Scholar 

  • Bonting, S. L. (1970) Sodium-potassium activated adenosine triphosphatase and cation transport. InMembranes and Ion Transport (edited byBittar, E. E.),1, pp. 257–63. New York: John Wiley.

    Google Scholar 

  • Caldwell, P. D., Hodgkin, A. L., Keynes, R. D. andShaw, T. I. (1960) The effects of injecting ‘energy rich’ phosphate compounds on the active transport of ions in the giant axons ofLoligo.Journal of Physiology 152, 561–90.

    PubMed  Google Scholar 

  • Ellisman, M. H. (1976) The distribution of membrane molecular specializations characteristic of the node of Ranvier is not dependent upon myelination.Transactions Society for Neuroscience Sixth Annual Meeting.II (1), 410.

    Google Scholar 

  • Ernst, S. A. (1972) Transport adenosine triphosphatase cytochemistry II. Cytochemical localization of ouabain sensitive, postassium-dependent secretory epithelium of the avian salt gland.Journal of Histochemistry and Cytochemistry 20, 23–38.

    PubMed  Google Scholar 

  • Ernst, S. A. (1975) Transport ATPase cytochemistry. Ultrastructural localization of potassium dependent and potassium independent phosphatase activities in rat kidney cortex.Journal of Cell Biology 66, 586–608.

    PubMed  Google Scholar 

  • Glynn, I. M. andKarlish, S. J. D. (1975) The sodium pump.Annual Reviews of Physiology 37, 13–55.

    Google Scholar 

  • Graham, R. C. andKarnovsky, M. J. (1966) The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney. Ultrastructural cytochemistry by a newtechnique.Journal of Histochemistry and Cytochemistry 14, 291–302.

    PubMed  Google Scholar 

  • Guth, L. andAlbers, R. W. (1974) Histochemical demonstration of (Na+,K+) activated adenosine triphosphatase.Journal of Histochemistry and Cytochemistry 22, 320–6.

    PubMed  Google Scholar 

  • Henn, F. A., Haljamae, H. andHamberger, A. (1972) Glial cell function. Active control of extracellular K concentration.Brain Research 43, 437–43.

    PubMed  Google Scholar 

  • Hertz, T. L. (1965) Possible role of neuroglia. A K+ mediated neuronal-neuroglial impulse transmission system.Nature 206, 1091–4.

    PubMed  Google Scholar 

  • Jean, D. H., Albers, R. W. andKoval, G. J. (1975) Sodium-potassium activated adenosine triphosphatase ofelectrophorus electric organ X. Immunochemical properties of the Lubrol-solubilized enzyme and its constituent polypeptides.Journal of Biological Chemistry 250, 1035–40.

    PubMed  Google Scholar 

  • Jean, D. H. andAlbers, R.W. (1976) Immunochemical studies on the large polypeptide ofelectrophorus electroplax (Na+ + K+)-ATPase.Biochemica Biophysica Acta 452, 219–26.

    Google Scholar 

  • Kuffler, S. W. andPotter, D.D. (1964) Glia in the leech central nervous system: Physiological properties and neuron-glia relationships.Journal of Neurophysiology 27, 290–320.

    PubMed  Google Scholar 

  • Kuffler, S.W. andNicholls, J. G. (1966) Physiology of neuroglial cells.Ergebnisse der Physiologie 57, 1–90.

    Google Scholar 

  • Kyte, J. (1976a) Immunoferritin determination of the distribution of the (Na+, K+) ATPase over the plasma membranes of renal convoluted tubules. I. Distal segment.Journal of Cell Biology 68, 287–303.

    PubMed  Google Scholar 

  • Kyte, J. (1976b) Immunoferritin determination of the distribution of the (Na+, K+) ATPase over the plasma membranes of renal convoluted tubules II. Proximal segment.Journal of Cell Biology 68, 304–18.

    PubMed  Google Scholar 

  • McLaughlin, B. J., Wood, J. G., Saito, K., Barber, R., Vaughn, J. E., Roberts, E. andWu, J. Y. (1974) The fine structural localization of glutamate decarboxylase in synaptic terminals of rodent cerebellum.Brain Research 76, 377–91.

    PubMed  Google Scholar 

  • Millonig, G. (1961) Advantages of a phosphate buffer for OsO4 solutions in fixation.Journal of Applied Physics 32, 1637 (abstract).

    Google Scholar 

  • Rosenbluth, J. (1976) Mechanism of accumulation of intramembranous particles at nodes of Ranvier.Transactions of the Society for Neuroscience Sixth Annual Meeting,II (1), 418.

    Google Scholar 

  • Stahl, W. L. andBroderson, S. H. (1976a) Histochemical localization of potassium-stimulated P-Nitrophenyl-phosphatase activity in the somatosensory cortex of the rat.Journal of Histochemistry and Cytochemistry 24, 731–9.

    PubMed  Google Scholar 

  • Stahl, W. L. andBroderson, S. H. (1976b) Localization of Na+, K+-ATPase in Brain.Federation Proceedings 35, 1260–5.

    PubMed  Google Scholar 

  • Swanson, P. D. andStahl, W. L. (1976) Ion transport. InBasic Neurochemistry, 2nd edition (edited bySiegel, G. J., Albers, R. W., Agranoff, B. W. andKatzman, R.) pp. 125–47. Boston: Little Brown.

    Google Scholar 

  • Venable, J. H. andCoggeshall, R. (1965) A simplified lead citrate stain for use in electron microscopy.Journal of Cell Biology 25, 407–8.

    PubMed  Google Scholar 

  • Whittam, R. andWheeler, K. P. (1970) Transport across cell membranes.Annual Review of Physiology 32, 21–60.

    PubMed  Google Scholar 

  • Whitaker, J. N. (1975) The antigenicity of myelin encephalitogenic protein: production of antibodies to encephalitogenic protein with deoxyribonucleic acid-encephalitogenic protein complexes.Journal of Immunology 114, 823–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wood, J.G., Jean, D.H., Whitaker, J.N. et al. Immunocytochemical localization of the sodium, potassium activated ATPase in knifefish brain. J Neurocytol 6, 571–581 (1977). https://doi.org/10.1007/BF01205220

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01205220

Keywords

Navigation