Skip to main content
Log in

A comparison of four techniques for mapping the distribution of serotonin and serotonin-containing neurons in fixed and living ganglia of the snail,Lymnaea

  • Published:
Journal of Neurocytology

Summary

The distribution of serotonin and serotonin-containing neurons was studied in the ganglia of the CNS of the snailLymnaea stagnalis. Results of the application of three different labelling techniques on wholemount preparations were compared with each other and with the serotonin content of the ganglia, measured by high-performance liquid chromatography. Serotonin immunocytochemistry resulted in the highest number of labelled neurons, but the more recently developedin vivo method of 5,6- or 5,7-dihydroxytryptamine-induced pigmentation also proved to be a reliable technique for the visualization of serotonin-containing cell bodies. In comparison with these two techniques, the glyoxylic acid fluorescence method appeared to be less sensitive. The distribution and number of serotonin-containing neurons and biochemically measured serotonin in specific ganglia showed a close correlation. By combining the results of the three labelling techniques, a detailed map of serotonin-containing neurons was constructed, and this was compared with maps of identified neurons prepared from earlier electrophysiological studies. Previously described serotonergic neurons were consistently found, as well as several new serotonin-containirig cell types in the cerebral, visceral and parietal ganglia. A network of serotonin-containing inter- and intraganglionic axon tracts, and thin serotonergic fibres in the perineurium were also demonstrated. Thisin vivo andin vitro identification of serotonin-containing neurons will facilitate further neurophysiological analysis of serotonergic neural mechanisms inLymnaea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Audesirk, G. J. (1985) Amine-containing neurons in the brain ofLymnaea stagnalis: Distribution and effects of precursors.Comparative Biochemistry and Physiology 81A, 359–65.

    Google Scholar 

  • Axelsson, S., Björklund, A., Falck, B., Lindvall, O. &Svensson, L. A. (1973) Glyoxylic acid condensation: A new fluorescence method for the histochemical demonstration of biogenic monoamines.Acta physiologica scandinavica 89, 57–62.

    Google Scholar 

  • Bailey, C. H., Hawkins, R. D., Chen, M. C. &Kandel, E. R. (1981) Interneurones involved in mediation and modulation of gill-withdrawal reflex inAplysia. IV. Morphological basis of presynaptic facilitation.Journal of Neurophysiology 45, 358–78.

    Google Scholar 

  • Balaban, P. M., Zakharov, I. S. &Matz, V. N. (1985) Method of vital selective staining of serotonergic nerve cells by 5,7-dihydxroxytryptamine.Dokladi Akademii Nauk SSSR 283, 735–8 (in Russian).

    Google Scholar 

  • Barber, A. (1982) Monoamine-containing varicosities in the neural sheath of a gastropod mollusc demonstrated by glyoxylic acid histofluorescence.Cell and Tissue Research 226, 267–73.

    Google Scholar 

  • Benjamin, P. R. (1983) Gastropod feeding: Behavioural and neural analysis of a complex multicomponent system. InNeural Origin of Rhythmic Movements (edited byRoberts, A. &Roberts, B.), pp. 159–93. Cambridge: Cambridge University Press.

    Google Scholar 

  • Benjamin, P. R. (1984) Interneuronal network acting on snail neurosecretory neurones (Yellow Cells and Yellow-green cells of Lymnaea).Journal of Experimental Biology 113, 165–85.

    Google Scholar 

  • Benjamin, P. R. &Allison, P. (1985) Regeneration of excitatory, inhibitory and biphasic synaptic connections made by a snail giant interneuron.Proceedings of the Royal Society of London, Series B 226, 159–76.

    Google Scholar 

  • Benjamin, P. R. &Elliott, C. J. H. (1989) Snail feeding oscillator: The central pattern generator and its control by modulatory interneurones. InCellular and Neuronal Oscillators (edited byJacklet, J.), pp. 173–214. New York: M. Dekker.

    Google Scholar 

  • Benjamin, P. R., Elliott, C. J. H. &Ferguson, G. P. (1985) Neural network analysis in the snail brain. InModel Neural Networks of Behaviour (edited bySelverston, A.), pp. 87–108. New York: Plenum Press.

    Google Scholar 

  • Benjamin, P. R. &Rose, R. M. (1979) Central generation of bursting in the feeding system of the snailLymnaea stagnalis.Journal of Experimental Biology 80, 93–118.

    Google Scholar 

  • Benjamin, P. R., Slade, C. T. &Soffe, S. R. (1980) The morphology of neurosecretory neurones in the pond snail,Lymnaea stagnalis, by the injection of Procion Yellow and horseradish peroxidase.Philosophical Transactions of the Royal Society of London, Series B 290, 449–78.

    Google Scholar 

  • Benjamin, P. R. &Winlow, W. (1981) The distribution of three wide-acting synaptic inputs to identified neurones in the isolated brain ofLymnaea stagnalis (L.).Comparative Biochemistry and Physiology 70A, 293–307.

    Google Scholar 

  • Boer, H. H., Schot, L. P. C., Steinbusch, H. W. M., Montagne, C. &Reichelt, D. (1984) Co-existence of immunoreactivity to anti-dopamine, anti-serotonin and anti-vasotocin in the cerebral giant neuron of the pond snailLymnaea stagnalis.Cell and Tissue Research 238, 411–12.

    Google Scholar 

  • Buckett, K. J. (1987)Neural Peptidergic Modulation of the Snail Heart. PhD Thesis, University of Sussex, Brighton, UK.

    Google Scholar 

  • Casey, C. &Winlow, W. (1985) Cellular localization of serotonin by glyoxylic acid condensation inLymnaea.Journal of'Physiology 369, 169P.

    Google Scholar 

  • Cottrell, G. A., Abernethy, K. B. &Barrand, M. A. (1979) Large amine-containing neurons in the central ganglia ofLymnaea stagnalis.Neuroscience 4, 685–9.

    Google Scholar 

  • De Vlieger, T. A., Devries, C. H. L. &Plesch, B. E. C. (1976) Peripheral and central control of the pneumostome inLymnaea stagnalis. InNeurobiology of Invertebrates. Gastropoda Brain (edited bySalanki, J.), pp. 629–34. Budapest: Akademiai Kiadó.

    Google Scholar 

  • Elliott, C. J. H. &Benjamin, P. R. (1985) Interactions of pattern-generating interneurones controlling feeding inLymnaea stagnalis.Journal of Neurophysiology 54, 1396–411.

    Google Scholar 

  • Granzow, B. &Rowell, C. H. F. (1981) Further observations on the serotonergic cerebral neurones ofHelisoma (Mollusca, Gastropoda): The case for homology with the metacerebral giant cells.Journal of Experimental Biology 90, 283–305.

    Google Scholar 

  • Hernádi, L., Elekes, K. &S.-Rózsa, K. (1989) Distribution of serotonin-containing neurons in the central nervous system of the snailHelix pomatia. Comparison of immunocytochemical and 5,6-dihydroxytryptamine-labelling.Cell and Tissue Research (in press).

  • Hopkins, W. E., Stone, L. S., Rothman, B. S., Basbaum, A. I. &Mayeri, E. (1982) Egg-laying hormone, Leucine-enkephalin and serotonin-immunoreactivity in the abdominal ganglion ofAplysia: a light microscopic study.Society for Neuroscience Abstracts 8, 587.

    Google Scholar 

  • Jahan-Parwar, B., S.-Rózsa, K., Salánki, J., Evans, M. L. &Carpenter, D. O. (1987)In vivo labelling of serotonin-containing neurons by 5,7-dihydroxytryptamine inAplysia.Brain Research 426, 173–8.

    Google Scholar 

  • Joosse, J. (1964) Dorsal bodies and dorsal neurosecretory cells of the cerebral ganglia ofLymnaea stagnalis (L.).Archives Néerlandaises de Zoologie 16, 1–103.

    Google Scholar 

  • Kemenes, Gy., Benjamin, P. R. &Hiripi, L. (1988) 5,6-dihydroxytryptamine-induced changes in the serotonergic modulation of feeding inLymnaea. InNeurobiology of Invertebrates. Transmitters, Modulators and Receptors (edited bySalánki, J. &S.-Rózsa, K.), pp. 415–31. Budapest: Akadémiai Kiadó.

    Google Scholar 

  • Kemenes, GY. &S.-Rózsa, K. (1987) The role of serotonergic mechanisms in food-induced arousal of the snailHelix pomatia L. InNeurobiology. Molluscan Models, (edited byBoer, H. H., Geraerts, W. P. M. &Joosse, J.), pp. 277–87. Amsterdam: North-Holland Publishing Company.

    Google Scholar 

  • Kistler, H. B., Jr, Hawkins, R. D., Koester, J., Steinbusch, H. W. M., Kandel, E. R. &Schwartz, J. H. (1985) Distribution of serotonin-immunoreactive cell bodies and processes in the abdominal ganglion of matureAplysia.Journal of Neuroscience 5, 72–80.

    Google Scholar 

  • Klemm, N. (1983) Detection of serotonin-containing neurons in the insect nervous system by antibodies to 5-HT. InFunctional Neuroanatomy (edited byStrausfeld, N. J.), pp. 302–16. Berlin: Springer-Verlag.

    Google Scholar 

  • Land, P. W. &Crow, T. (1985) Serotonin immunoreactivity in the circumesophageal nervous system ofHermissenda crassicornis.Neuroscience Letters 62, 199–205.

    Google Scholar 

  • McCaman, M. W., Ono, J. K. &McCaman, R. E. (1984) 5-Hydroxytryptamine measurements in molluscan ganglia and neurons using a modified radioenzymatic assay.Journal of Neurochemistry 43, 91–9.

    Google Scholar 

  • McCrohan, C. R. (1984) Properties of ventral cerebral neurones involved in the feeding system of the snail,Lymnaea stagnalis.Journal of Experimental Biology 108, 257–72.

    Google Scholar 

  • McCrohan, C. R. &Benjamin, P. R. (1980) Patterns of activity and axonal projections of the cerebral giant cells of the snail,Lymnaea stagnalis.Journal of Experimental Biology 85, 149–68.

    Google Scholar 

  • McKenzie, J. D., Syed, N. I., Tripp, J. &Winlow, W. (1979) Are pedal cilia inLymnaea under neural control? InNeurobiology. Molluscan Models (edited byBoer, H. H., Geraerts, W. P. M. &Joosse, J.), pp. 26–30. Amsterdam: North Holland Publishing Company.

    Google Scholar 

  • Nässel, D. R. (1987) Serotonin and serotonin-immunoreactive neurons in the nervous system of insects.Progress in Neurobiology 30, 1–85.

    Google Scholar 

  • Ono, J. K. &McCaman, R. E. (1984) Immunocytochemical localization and direct assays of serotonin-containing neurons inAplysia.Neuroscience 11, 549–60.

    Google Scholar 

  • Sakharov, D. A. &Zs-Nagy, I. (1968) Localization of biogenic monoamines in cerebral ganglia ofLymnaea stagnalis L.Acta biologica Academiae Scientiarum hungaricae 19, 145–57.

    Google Scholar 

  • Saller, C. R. &Salama, A. J. (1984) Rapid automated analysis of biogenic amines and their metabolites using reversed-phase high performance liquid chromatography with electrochemical detection.Journal of Chromatography 309, 287–98.

    Google Scholar 

  • Salimova, N. B., Sakharov, D. A., Milosević, I., Turpaev, T. M. &Rakić, L. (1987) Monoamine-containing neurons in theAplysia brain.Brain Research 400, 285–99.

    Google Scholar 

  • Schwartz, J. H. &Shkolnik, L. J. (1981) The giant serotonergic neuron ofAplysia: a multi-targeted nerve cell.Journal of Neuroscience 1, 606–19.

    Google Scholar 

  • Slade, C. T., Mills, J. &Winlow, W. (1981) The neuronal organisation of the paired pedal ganglia ofLymnaea stagnalis (L.).Comparative Biochemistry and Physiology 69A, 789–803.

    Google Scholar 

  • S.-Rózsa, K. (1984) The pharmacology of molluscan neurons.Progress in Neurobiology 23, 79–150.

    Google Scholar 

  • S.-Rózsa, K., Hernádi, L. &Kemenes, Gy. (1986) Selectivein vivo labelling of serotonergic neurones by 5,6-dihydroxytryptamine in the snailHelix pomatia L.Comparative Biochemistry and Physiology 85C, 419–25.

    Google Scholar 

  • Sternberger, L. A. (1979)Immunocytochemistry, 2nd edn Chichester: John Wiley and Son.

    Google Scholar 

  • Thomas, J. D., Lough, A. A. &Lodge, R. W. (1975) The chemical ecology ofBiomphalaria glabrata (Say) the snail host ofSchistosoma mansoni (Sambon): the search for factors in media conditioned by snails which inhibit their growth and reproduction.Journal of Applied Ecology 12, 421–34.

    Google Scholar 

  • Tritt, S. H., Lowe, I. P. &Byrne, J. H. (1983) A modification of the glyoxylic acid induced histofluorescence technique for demonstration of catecholamines and serotonin in tissues ofAplysia californica.Brain Research 259, 159–62.

    Google Scholar 

  • Vehovszky, A., Kemenes, Gy., Hiripi, L., Hernádi, L. &S.-Rözsa, K. (1988) Reversible effect of 5,6-DHT treatment ofHelix: a combined behavioural, electro-physiological and biochemical study. InNeurobiology of Invertebrates. Transmitters, Modulators and Receptors. (edited bySalánki, J. &S.-Rózsa, K.), pp. 403–14. Budapest: Akadémiai Kiadó.

    Google Scholar 

  • Walker, R. J. (1986) Transmitters and modulators. InThe Mollusca, Vol. 9,Neurobiology and Behaviour, Part 2 (edited byWillows, A. O. D.), pp. 279–484. New York: Academic Press.

    Google Scholar 

  • Winlow, W. &Benjamin, P. R. (1976) Neuronal mapping of the brain of the pond snail,Lymnaea stagnalis L. InNeurobiology of Invertebrates. Gastropoda Brain (edited bySalánki, J.), pp. 41–61, Budapest: Akadémiai Kiadó.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kemenes, Elekes, K., Hiripi, L. et al. A comparison of four techniques for mapping the distribution of serotonin and serotonin-containing neurons in fixed and living ganglia of the snail,Lymnaea . J Neurocytol 18, 193–208 (1989). https://doi.org/10.1007/BF01206662

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01206662

Keywords

Navigation