Skip to main content
Log in

Dopamine-dependent hyperactivity in the rat following manipulation of GABA mechanisms in the region of the nucleus accumbens

  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Summary

The effect of manipulation of GABA mechanisms in the region of the nucleus accumbens on dopamine-dependent locomotor hyperactivity in the rat has been studied. Two models of hyperactivity were used: (1) the injection of dopamine into the region of the nucleus accumbens in nialamidepretreated animals and (2) the systemic administration of d-amphetamine. Both GABA and the GABA agonist 3-aminopropane sulphonic acid (3-APS) depressed hyperactivity in a dose-related manner. High concentrations of GABA (>100μg) were required to produce a significant effect and the response was short-lived possibly reflecting the efficient GABA inactivating mechanisms. 3-APS proved to be approximately 10 times more potent as compared to GABA in the dopamine-accumbens hyperactivity model. Conversely GABA receptor antagonism with low doses of either picrotoxin or bicuculline enhanced the mild locomotor response induced by a low dose of dopamine injected into the nucleus accumbens. However such results were difficult to evaluate fairly as higher doses of the GABA antagonists resulted in varying degrees of generalized seizures. Blockade of GABA uptake systems with cis-1, 3-aminocyclohexane carboxylic acid (ACHC), nipecotic acid orβ-alanine within the region of the nucleus accumbens produced doserelated depression of dopamine-dependent hyperactivity in both models. GABA uptake blockade (nipecotic acid) significantly enhanced the GABA-mediated depression of hyperactivity induced by bilateral injection of dopamine into the nucleus accumbens.

The results demonstrate an inhibitory action of GABA and drugs facilitating GABA-ergic transmission on dopamine-dependent hyperactivity in the rat. Although open to criticisms of not being able to distinguish between true GABA effects and the results of non-specific neuronal depression the hyperactivity model underlines the potency of the GABA uptake blocking compounds and their possible potential for future clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Balcom, G. J., Lenox, R. H., Meyerhoff, J. L. Regionalγ-aminobutyric acid levels in rat brain determined after microwave fixation. J. Neurochem.24, 609–613 (1975).

    PubMed  Google Scholar 

  • Bird, E. D., Barnes, J., Iversen, L. L., Spokes, E. G., Mackay, A. V. P., Shepherd, M. Increased brain dopamine and reduced glutamic acid decarboxylase and choline acetyltransferase activity in schizophrenia and related psychoses. Lancetii, 1157–1159 (1977).

    Google Scholar 

  • Bird, E. D., Iversen, L. L. Huntington's chorea: post-mortem measurement of glutamic acid decarboxylase, choline acetyltransferase and dopamine in basal ganglia. Brain97, 457–472 (1974).

    PubMed  Google Scholar 

  • Bowery, N. G., Jones, G. P., Neal, M. J. Selective inhibition of neuronal GABA uptake by cis-1, 3-aminocyclohexane carboxylic acid. Nature264, 281–283 (1976).

    PubMed  Google Scholar 

  • Creese, I., Iversen, S. D. The role of forebrain dopamine systems in amphetamine-induced stereotyped behaviour in the rat. Psychopharmacologia (Berl.)39, 345–357 (1974).

    PubMed  Google Scholar 

  • Curtis, D. R., Watkins, J. C. Analogues of glutamic acid andγ-amino-n-butyric acid having potent actions on mammalian neurones. Nature191, 1010–1011 (1961).

    PubMed  Google Scholar 

  • De Feudis, F. V., Martin del Rio, R. Isβ-alanine an inhibitory neurotransmitter? Gen. Pharmacol.8, 177–180 (1977).

    PubMed  Google Scholar 

  • Giorguieff, M. F., Kernel, M. K., Glowinski, J., Besson, M. J. Stimulation of dopamine release by GABA in rat striatal slices. Brain Res.139, 115–130 (1978).

    PubMed  Google Scholar 

  • Green, A. R., Tordoff, A. F. C., Bloomfield, M. R. Elevation of brain GABA concentrations with amino-oxyacetic acid: effect on the hyperactivity syndrome produced by increased 5-hydroxytryptamine synthesis in rats. J. Neural Transm.39, 103–112 (1976).

    PubMed  Google Scholar 

  • Huot, S., Lippert, B., Palfreyman, M. G., Schechter, P. J. Inhibition of dopaminergic activity in the extrapyramidal and limbic systems byγ-acetylenic GABA. Brit. J. Pharmacol.60, 264–265P (1977).

    Google Scholar 

  • Iversen, L. L., Kelly, J. S. Uptake and metabolism ofγ-aminobutyric acid by neurones and glial cells. Biochem. Pharmacol.24, 933–938 (1978).

    Google Scholar 

  • Johnston, G. A. R., Krogsgaard-Larsen, P., Stephanson, A. L., Twitcbin, B. Inhibition of the uptake of GABA and related amino acids in rat brain slices by the optically active isomers of nipecotic acid. J. Neurochem.26, 1029–1032 (1976).

    PubMed  Google Scholar 

  • Kelly, P. H., Seviour, P. W., Iversen, S. D. Amphetamine and apomorphine responses in the rat following 6-OHDA lesions of the nucleus accumbens septi and corpus striatum. Brain Res.94, 507–522 (1975).

    PubMed  Google Scholar 

  • Kerwin, R., Pycock, C. Baclofen (β-p-chlorophenyl-γ-aminobutyric acid) enhances3H-GABA release from rat globus pallidusin vitro. J. Pharmac. Pharmacol.30, 622–627 (1978).

    Google Scholar 

  • Kim, J. S., Bak, I. J., Hassler, R., Okada, Y. Role ofγ-aminobutyric acid (GABA) in the extrapyramidal motor system: 2. Some evidence for the existence of a type of GABA-rich strionigral neurons. Exp. Brain Res.14, 95–104 (1971).

    PubMed  Google Scholar 

  • König, J. F. R., Klippel, R. A. The Rat Brain. Baltimore: Williams&Wilkins. 1963.

    Google Scholar 

  • Krogsgaard-Larsen, P., Johnston, G. A. R. Inhibition of GABA uptake in rat brain slices by nipecotic acid, various isoxazoles and related compounds. J. Neurochem.25, 797–802 (1975).

    PubMed  Google Scholar 

  • Krogsgaard-Larsen, P., Johnston, G. A. R., Curtis, D. R., Games, C. J. A., McCulloch, R. M. Structure and biological activity of a series of conformationally restricted analogues of GABA. J. Neurochem.25, 803–809 (1975).

    PubMed  Google Scholar 

  • McGeer, P. L., McGeer, E. G., Hattori, T. Dopamine-acetylcholine-GABA neuronal linkages in the extrapyramidal and limbic systems. In: Adv. Biochem. Psychopharmacology, Vol. 16 (Costa, E., Gessa, G. L., eds.), pp. 397–402. New York: Raven Press. 1977.

    Google Scholar 

  • Olpe, H. R., Koella, W. P., Wolf, P., Haas, H. L. The action of baclofen on neurons of the substantia nigra and of the ventral tegmental area. Brain Res.134, 577–580 (1977).

    PubMed  Google Scholar 

  • Pijnenburg, A. J. J., Van Rossum, J. M. Stimulation of locomotor activity following injection of dopamine into the nucleus accumbens. J. Pharmac. Pharmacol.25, 1003–1005 (1973).

    Google Scholar 

  • Pycock, C. J., Horton, R. W. Possible GABA-mediated control of dopamine-dependent behavioural effects from the nucleus accumbens of the rat. Psychopharmacology49, 173–179 (1976).

    PubMed  Google Scholar 

  • Pycock, C. J., Horton, R. W., Marsden, C. D. The behavioural effects of manipulating GABA function in the globus pallidus. Brain Res.116, 353–359 (1976).

    PubMed  Google Scholar 

  • Olsen, R. W., Ban, M., Miller, T., Johnston, G. A. R. Chemical instability of the GABA antagonist bicuculline under physiological conditions. Brain Res.98, 383–387 (1975).

    PubMed  Google Scholar 

  • Scheel-Krüger, J., Cools, A. R., Honig, W. Muscimol antagonises the ergometrine-induced locomotor activity in the nucleus accumbens: Evidence for a GABA dopaminergic interaction. Eur. J. Pharmacol.42, 311–313 (1977).

    PubMed  Google Scholar 

  • Stoof, J. C., Mulder, A. M. Increased dopamine release from rat striatal slices by inhibitors of GABA-aminotransferase. Eur. J. Pharmacol.46, 177–180 (1977).

    PubMed  Google Scholar 

  • Wachtel, H., Andén, N.-E. Motor activity of rats following intracerebral injections of drugs influencing GABA mechanisms. Naunyn-Schmiedeberg's Arch. Pharmacol.302, 133–139 (1978).

    Google Scholar 

  • Waddington, J. C., Cross, A. J. Neurochemical changes following kainic acid lesions of the nucleus accumbens: implications for a GABA-ergic accumbal-ventral tegmental pathway. Life Sci.22, 1011–1014 (1978).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pycock, C.J., Horton, R.W. Dopamine-dependent hyperactivity in the rat following manipulation of GABA mechanisms in the region of the nucleus accumbens. J. Neural Transmission 45, 17–33 (1979). https://doi.org/10.1007/BF01243878

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01243878

Keywords

Navigation