Skip to main content
Log in

Brain tyrosine level controls striatal dopamine synthesis in haloperidol-treated rats

  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Summary

Animals received either haloperidol (2 mg/kg) or probenecid (200 mg/kg) in conjunction with tyrosine (100 mg/kg) or its diluent. Striatal homovanillic acid levels increased in probenecid-treated animals to the same range whether they were given tyrosine or not. In haloperidol-treated animals the levels of homovanillic acid were significantly elevated in animals receiving tyrosine. Tyrosine and homovanillic acid levels were highly correlated as determined by linear regression analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Coyle, J. T.: Tyrosine hydroxylase in brain-cofactor requirements, regional and subcellular distribution. Biochem. Pharmac.21, 1935–1944 (1972).

    Google Scholar 

  • Glowinski, J., Iversen, L. L.: Regional studies of catecholamines in the rat brain. I. J. Neurochem.13, 665–669 (1966).

    Google Scholar 

  • Gudelsky, G. A., Moore, K. E.: Differential drug effects on dopamine concentrations and rates of turnover in the median eminence, olfactory tubercle and corpus striatum. J. Neural Trans.38, 95–105 (1976).

    Google Scholar 

  • Renaud, B., Quenin, P., Quincy, C.: Détermination fluorimétrique enflux centiner de l'acide homovanillique. Application au liquide céphalorachidien. Clin. Chim. Acta52, 179–185 (1974).

    Google Scholar 

  • Spector, R., Lorenzo, A. V.: The effects of salicylate and probenecid on the cerebrospinal fluid transport of penicillin, aminosalicyclic acid and iodide. J. Pharmac. Ext. Ther.188, 55–65 (1974).

    Google Scholar 

  • Ungerstedt, U., Butcher, L. L., Butcher, S. G., Andén, N.-E., Fuxe, K.: Direct chemical stimulation of dopaminergic mechanisms in the neostriatum of the rat. Brain Res.14, 461–471 (1969).

    PubMed  Google Scholar 

  • Waalkes, T. P., Udenfriend, S.: A fluorometric method for estimation of tyrosine in plasma and tissues. J. Lab. Clin. Med.50, 733–736 (1957).

    PubMed  Google Scholar 

  • Waymire, J. C., Bjun, R., Weiner, N.: Assay of tyrosine hydroxylase by coupled decarboxylation of dopa formed from 1-14C-tyrosine. Analyt. Biochem.43, 588–600 (1971).

    PubMed  Google Scholar 

  • Wurtman, R. J., Larin, F., Mostafapour, S., Fernstrom, J. D.: Brain catechol synthesis: Control by brain tyrosine concentration. Science185, 183–184 (1974).

    PubMed  Google Scholar 

  • Wurtman, R. J., Fernstrom, J. D.: Control of brain monoamine synthesis by diet and plasma amino acids. Am. J. Clin. Nutr.28, 638–647 (1975).

    PubMed  Google Scholar 

  • Zivkovic, B., Guidotti, A., Costa, E.: Effects of neuroleptics on striatal tyrosine hydroxylase changes in affinity for the pteridine cofactor. Molec. Pharmac.10, 727–735 (1974).

    Google Scholar 

  • Zivkovic, B., Guidotti, A.: Changes of kinetic content of striatal tyrosine hydroxylase elicited by neuroleptics that impair the function of dopamine receptors. Brain Res.79, 505–509 (1974).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scally, M.C., Ulus, I. & Wurtman, R.J. Brain tyrosine level controls striatal dopamine synthesis in haloperidol-treated rats. J. Neural Transmission 41, 1–6 (1977). https://doi.org/10.1007/BF01252960

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01252960

Keywords

Navigation