Skip to main content
Log in

A new fluorescent histological marker for ischemic neurons, EA 50: Correlated with Fos and Jun/ AP-1 immunoreactivity

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Cerebral ischemia/hypoxia induces ischemic neuronal changes characterized by nuclear pyknosis, cytoplasmic shrinkage, and basophilia. The ischemic neurons were shown to exhibit strong and persistent c-fos proto-oncogene. The ischemic neuronal changes and c-fos expression are thought to be the consequence of release of excessive glutamate by the ischemic neurons. In the present study, we investigated with immunohistochemistry the subcellular distribution of Fos and Jun/AP-1, the protein products of c-fos and c-jun proto-oncogenes, and compared them with histological changes show by hematoxylin-eosin and by EA 50 stains. The latter is a stain mixture used traditionally in the Papanicolaou procedure and has a specific affinity for ischemic neurons. The active ingredient is eosin Y, a tetrabrominated derivative of fluorescein. With EA 50, the ischemic neurons stain red and emit a yellow fluorescence, while the non-ischemic neurons are green and non-fluorescent. The subcellular site of cosin Y binding corresponds with Fos and Jun/AP-1; all are concentrated in the nuclei and spread into the perikaryon, dendrites, and axons. The eosin Y-binding appears in neurons that have shown advanced ischemic changes. The dye is thus a good histological marker for damaged neurons, but requires freshly fixed tissues and paraffin sections of less than 4 μm thick. Preincubation of tissue sections in antibodies against Fos and Jun abolishes the eosin Y binding, suggesting that the dye may interact with Fos/Jun/AP-1 protein or other protein products in the ischemic neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adamson ED, Meek J, Edwards SA (1985) Product of the cellular oneogene, c-fos, observed in mouse and human tissues using an antibody to a synthetic peptide. EMBO J 4: 941–947

    PubMed  Google Scholar 

  • An G, Lin TN, Liu JS, Xue JJ, He YY, Hsu CY (1993) Expression of c-fos and c-jun family genes after focal cerebral ischemia. Ann Neurol 33: 457–464

    PubMed  Google Scholar 

  • Angel P, Allegrerro E., Okino S, Hattori K, Boyle W, Hunter T, Karin M (1988) Oncogene jun encodes a sequence-specific transactivator similar to AP-1. Nature 332: 166–171

    PubMed  Google Scholar 

  • Arenander AT, De Vellis J, Herschman HR (1989) Induction of c-fos and TIS genes in cultured rat astrocyles by neurotransmitter. J Neurosci Res 24: 107–114

    PubMed  Google Scholar 

  • Bohmann D, Bos T, Admon A, Nishimura T, Vogt P, Tjian R (1987) Human protoonceogene c-jun encodes a DNA binding protein with structural and functional properties of transcription factor AP-I, Science 238: 1386–1392

    PubMed  Google Scholar 

  • Brierley JB, Graham DI (1984) Hypoxia and vascular disorders of the central nervous system. In: Adams JH, Corsallis JAN, Duchen LW (eds) Greenfields neuropathology, Arnold London pp 125–207

    Google Scholar 

  • Bullit E (1989) Induction of c-fos-like protein within the lumbar spinal cord and thalamus of the rat following peripheral stimulation. Brain Res 493:391–397

    PubMed  Google Scholar 

  • Chan PH, Fishman RA, Longar S, Chen S. Yu A (1985) Cellular and molecular effects of polyunsaturated fatty acids in brain ischemia and injury. Prog Brain Res 63: 227–235

    PubMed  Google Scholar 

  • Chen ST (1986) A model of forcal ischemic stroke in the rat: reproducible extensive cortical infarction. Stroke 17: 738–743

    PubMed  Google Scholar 

  • Chiu R, Boyle WJ, Meek J, Smeal T, Hunter T, Karin M (1988) The c-Fos protein interacts with c-Jun/AP-1 to stimulate transcription of AP-1 responsive genes. Cell 54: 541–552

    PubMed  Google Scholar 

  • Choi DW (1990) Cerebral hypoxia: some new approaches and unanswered question. J Neurosci 10: 2493–2501

    PubMed  Google Scholar 

  • Cole AJ, Saffen DW, Baraban JM, Worley PF (1989) Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation. Nature 340: 474–476

    PubMed  Google Scholar 

  • Curran T, Teich NM 1982) Candidate product of the FBJ murine osteosarcoma virus phosphoprotein. J Virol 42: 14–122

    Google Scholar 

  • Dragunow M, Robertson HA (1988) Brain injury induces c-fos protein(s) in nerve glia-like cells in adult mammalian brain. Brain Res 455: 295–299

    PubMed  Google Scholar 

  • Dugich-Djordjevic MM, Tocco G, Lapchak PA, Pasinetti GM, Najm I, Baudry M, Hefti F (1992) Regionally specific and rapid increase in brain-derived neurotrophic factor messenger RNA in the adult rat brain following seizures induced by systemic administration of kainic acid Neuroscience 47: 303–315

    PubMed  Google Scholar 

  • Greenberg ME, Greene LA, Ziff EB (1985) Nerve growth factor and epidermal growth factor induce rapid transient changes in proto-oncogen transcription in PC12 cells. J Biol Chem 260: 14101–14110

    PubMed  Google Scholar 

  • Greenberg ME, Ziff EB, Greene LA (1986) Stimulation of neuronal acetylcholine receptors induces rapid gene transcription. Science 234: 80–83

    PubMed  Google Scholar 

  • Halazonetis TD, Georgopoulos K, Greenberg ME, Leder P (1988) e-jun dimerizes with itself and with c-fos, forming complexes of different binding affinities. Cell 55: 918–924

    Google Scholar 

  • Herdegen T, Sandkuhler J, Gass P, Kiessling M, Bravo R, Zimmerman M (1993) Jun. Fos KROX and CREB transcription factor protens in the rat cortex: basal expresssion and induction by spreading depression and epileptic seizures J Comp Neurol 333: 271–288

    PubMed  Google Scholar 

  • Hughes HE, Dodds TC (1968) Handbook of diagnostic cytology, Livingstone Edinburgh London, pp 215–217

    Google Scholar 

  • Huni SP, Pini A, Evan G (1987) Induction of c-fos-like protein in spinal cord neurons following sensory stimulation. Nature 283: 632–634

    Google Scholar 

  • Kiessling M, Gass P (1993) Immediate early gene expression in experimental epilepsy. Brain Pathol 3: 381–393

    PubMed  Google Scholar 

  • Kiessling M, Stumm G, Xie Y, Herdegen T, Aguzzi A, Bravo R, Gass P (1993) Differential transcription of immediate early genes in the gerbil hippocampus after tranient global ischemia. J Cereb Blood Floww Metab 13:914–924

    Google Scholar 

  • Kirino T (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239: 75–69

    Google Scholar 

  • Lamph WW Wamsley Sassone-Corsi P, Verma IM (1988) Induction of protooncogene by serum and TPA. Nature 334: 629–631

    PubMed  Google Scholar 

  • Lillie RD (1969) H.J. conn's biological stains, Williams and Willkins, Baltimore, Md., p. 241

    Google Scholar 

  • Liu HM, Chen HH (1994a) c-Fos protein expression and ischemic changes in neurens vulnerable to ischemia/hypoxia, correlated with basic fibroblast growth factor immunoreactivity. J Neuropathol Exp Neurol 53: 598–605

    PubMed  Google Scholar 

  • Liu HM, Chen HH (1994b) Correlation between basic fibroblast growth factor expression and cell proliferation in experimental brain infarct: studied with proliferating nuclear antigen immunohistochemistry. J Neuropathol Exp Neurol 53: 118–126

    PubMed  Google Scholar 

  • Liu HM, Yang LH, Yang YJ (1995) Schwann cell properties 3. c-fos expression, bFGF production, phagocytosis and proliferation during Wallerian degeneration. J. Neuropathol Exp Neurol 54: 487–496

    PubMed  Google Scholar 

  • Maki Y, Bos TJ, Davis C, Starbuck M, Vogt PK (1987) Avian sarcoma virus 17 carries the jun oncogene. Proc Natl Acad Sci USA 84: 2848–2852

    PubMed  Google Scholar 

  • Meldrum B, Evans M, Griffiths T, Simon R (1985) Ischemic brain damage: the role of excitatory activity and of calcium entry. Br J Anaesth 57: 44–46

    PubMed  Google Scholar 

  • Melloni E, Pontremoli S (1989) The calpains. Trends. Neurosci 12: 438–444

    PubMed  Google Scholar 

  • Morgan JL, Curran T (1986) Role of ion in the control of c-fos expression Nature 322: 552–555

    PubMed  Google Scholar 

  • Morgan JI, Curran T (1990) Inducible proto-oncogene of the nervous system: their contribution to transcription factors and neural plasticity. Prog Brain Res 86: 287–294

    PubMed  Google Scholar 

  • Naranjo JR, Mellstrom B, Achaval M, Sassone-Corsi (1991) Molecular pathways of pain: Fos/Jun-mediated activation of a noncanonical AP-1 site in the prodynorphin gene. Neuron 6: 607–617

    PubMed  Google Scholar 

  • Nicotera P, McConkey DJ, Dypbukt JM, Jones DP, Orrenius S (1988) Ca2+ acivated mechanisms in cell killing. Drug Metab 20: 193–201

    Google Scholar 

  • Pulsinelli WA (1985) Selective neuronal vulnerability: morphological and molecular characteristics. Prog Brain Rev 63: 29–37

    Google Scholar 

  • Rothman SM, Olney JW (1986) Glutamate and pathophy siology of hypoxic-ischemic brain damage. Ann Neurol 19: 105–111

    Google Scholar 

  • Sagar SM, Sharp FR (1993) Early response genes as markers of neuronal activity and growth factor action. Adv Neurol 59: 273–284

    PubMed  Google Scholar 

  • Scholz W (1984) Topistic lesion. In: Schade JP, McMenemy WM (eds) Selective vulnerability of the brain in hypoxaemia. Blackwell Scientific Oxford, pp 257–267

    Google Scholar 

  • Schuermann M, Neuberg M, Hunter JB, Jenuwein T, Ryseck R-P, Bravo R, Muller R (1989) The leucine repeal motif in Fos protein mediates complex formation with Jun/AP-l and is required for transformation Cell 56: 507–516

    PubMed  Google Scholar 

  • Selsted ME, Becker HW III (1986) Eosin Y: a reversible stain for detecting electrophoretically resolved protein Anal Biochem 155: 270–274

    PubMed  Google Scholar 

  • Sharp FR, Gomzatez MF, Hisanage K, Mobley WC, Sugar SM (1989) Induction of Fos-like immunoureactivty in rat forebrain following cortical lesions and NGF injections. Neurosci Lett 100: 117–122

    PubMed  Google Scholar 

  • Shen M, McFadden, Greenberg ME (1990) Membrane depolarization and calcium induce c-fos transciription via phosphorylation of transcription factor CREB Neuron 4: 571–582

    PubMed  Google Scholar 

  • Siesjo BK, Bengtsson F (1989) Calcium fluxes, calcium antagonists and calcium-related pathology in brain ischemia, hypoxia, and spreading depression: a unifying hypothesis. J Cere Blood Floow Metab 9: 127–140

    Google Scholar 

  • Simon RP, Swan -JH, Griffith T, Medrum BS (1984) Blockade ofN-methyl-D-aspartate receptors may protect against ischemic damage in the brain. Science 226: 850–852

    PubMed  Google Scholar 

  • Sonnenberg JL, Rauscher FJ, Morgan JI, Curran T (1989) Regulation of proenkephalin by Fos and Jun. Science 246: 1622–1624

    PubMed  Google Scholar 

  • Spielmeyer W (1925) Zur Pathogenese örtlich elektiver Gehirnveränderungen. Z Gesamte Neurol Psychiatr 99: 756–776

    Google Scholar 

  • Uemura Y, Kowell NW, Moskowitz MA (1991) Focal ischemia in rats causes time-dependent expression of c-fos protein immunoreactivity in widespread regions of ipsilateral cortex. Brain Res 552: 99–105

    PubMed  Google Scholar 

  • Zafra F, Hengerer B, Leibrock J, Thoenen H, Lindholm D (1990) Activity dependent regulation of BDNF and NGF mRNAs in the rat hippocampus is mediated by non-NMDA glutamate receptors. EMBO J 3545-3550

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, H.H., Liu, H.M. A new fluorescent histological marker for ischemic neurons, EA 50: Correlated with Fos and Jun/ AP-1 immunoreactivity. Histochem Cell Biol 105, 375–382 (1996). https://doi.org/10.1007/BF01463658

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01463658

Keywords

Navigation