Skip to main content
Log in

Structural components in the synaptic cleft captured by freeze-substitution and deep etching of directly frozen cerebellar cortex

  • Published:
Journal of Neurocytology

Summary

Structural components in the synaptic cleft were examined in cerebellar excitatory synapses by conventional electron microscopy and by rapid freezing followed by freeze-substitution or deep etching. Two transverse components and one parallel element were identified in the clefts of rapidly frozen and freeze-substituted synapses: (i) bridging fibrils, 4–6 nm in diameter, that span the cleft; (ii) columnar pegs, 4–6 nm wide and 8–15 nm high, projecting from the postsynaptic surface; and (iii) intervening fine fibrils running parallel to the apposed synaptic membranes. These were more clearly visible in deep-etched synapses, although the postsynaptic pegs were difficult to distinguish from intramembrane particles in the cross-fractured postsynaptic membranes. Deep etching also revealed other fibrils on the cytoplasmic surface of the postsynaptic membrane. These appear to contact the membrane surface or the intramembrane particles. Freeze-substituted materials also displayed the fibrillar components in the postsynaptic dense fuzz, but failed to display the presynaptic dense projections typically observed in thin sections or deep-etched replicas of the conventionally fixed materials. The bridging fibrils are likely to play a mechanical role in holding the synapse together, while the short pegs may be integral parts of the receptor molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AKERT, K., MOOR, H., PFENNINGER, K. & SANDRI, C. (1969) Contribution of new impregnation methods and freeze-etching to the problem of synaptic fine structure.Progress in Brain Research 31, 223–40.

    PubMed  Google Scholar 

  • AKERT, K. & PFENNINGER, K. (1969) Synaptic fine structure and neural dynamics. InCellular Dynamics of the Neuron (edited by BARONDES, S. H.), pp. 245–60. Academic Press: New York.

    Google Scholar 

  • BLOOM, F. E. & AGHAJANIAN, G. K. (1968) Fine structure and cytochemical analysis of the staining of synaptic junctions with phosphotungstic acid.Journal of Ultrastructure Research 22, 361–75.

    PubMed  Google Scholar 

  • BONDAREFF, W. & SJØSTRAND, J. (1969) Cytochemistry of synaptosomes.Experimental Neurology 24, 450–8.

    PubMed  Google Scholar 

  • BRIDGMAN, P. C., KACHER, B. & REESE, T. S. (1986) The structure of cytoplasm in directly frozen cultured cells. II. Cytoplasmic domains associated with organelle movements.Journal of Cell Biology 102, 1510–21.

    PubMed  Google Scholar 

  • BRIDGMAN, P. C. & REESE, T. S. (1984) The structure of cytoplasm in directly frozen cultured cells. I. Filamentous networks and the cytoplasmic ground substance.Journal of Cell Biology 99, 1655–68.

    PubMed  Google Scholar 

  • COHEN, R. S. & SIEKEVITZ, P. (1978) Form of the postsynaptic density. A serial section study.Journal of Cell Biology 78, 36–46.

    PubMed  Google Scholar 

  • COTMAN, C. W. & TAYLOR, D. (1974) Localization and characterization of concanavalin A receptors in the synaptic cleft.Journal of Cell Biology 62, 236–42.

    PubMed  Google Scholar 

  • DE ROBERTIS, E. PELLEGRINO, D. I., RODRIGUEZ, DE LORES ARNAIZ, G. & SALGANICOFF, L. (1961) Electron microscope observations on nerve endings isolated from rat brain.Anatomical Record 139, 220–1.

    Google Scholar 

  • ELLISMAN, M. H. (1984) 3-dimensional imaging of a transcellular filament network that interconnects cells in tissues.Journal of Cell Biology 99, 195a.

    Google Scholar 

  • ELLISMAN, M. H., FIELDS, R. D., ANDERSON, K. L. & DEERINCK, T. J. (1985) Transcellular filament at synapses: A structural continuum linking synaptic membranes and cytoskeletons.Neuroscience Abstracts 11, 646.

    Google Scholar 

  • GORDON-WEEKS, P. R., JONES, D. H., GRAY, E. G. & BARRON, J. (1981) Trypsin separates synaptic junctions to reveal pre- and post-synaptic concanavalin A receptors.Brain Research 219, 224–30.

    PubMed  Google Scholar 

  • GRAY, E. G. (1959) Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study.Journal of Anatomy 93, 420–33.

    PubMed  Google Scholar 

  • GRAY, E. G. (1961) The granule cells, mossy synapses and Purkinje spine synapses of the cerebellum: light and electron microscope observations.Journal of Anatomy 95, 345–56.

    PubMed  Google Scholar 

  • GRAY, E. G. (1963) Electron microscopy of presynaptic organelles of the spinal cord.Journal of Anatomy 97, 101–6.

    PubMed  Google Scholar 

  • GRAY, E. G. (1966) Problems of interpretating the fine structure of vertebrate and invertebrate synapses.International Review of Genetics and Experimental Zoology 2, 139–70.

    Google Scholar 

  • GRAY, E. G. (1975) Synaptic fine structure and nuclear, cytoplasmic and extracellular networks.Journal of Neurocytology 4, 315–39.

    PubMed  Google Scholar 

  • GRAY, E. G. & WILLIS, R. A. (1968) Problems of electron stereoscopy of biological tissue.Journal of Cell Science 3, 309–21.

    Google Scholar 

  • GRAY, E. G. & WILLIS, R. A. (1970) On synaptic vesicles, complex vesicles and dense projections.Brain Research 24, 149–68.

    PubMed  Google Scholar 

  • GULLEY, R. L. & REESE, T. S. (1981) Cytoskeletal organization at the postsynaptic complex.Journal of Cell Biology 91, 298–302.

    PubMed  Google Scholar 

  • HEUSER, J. E. & REESE, T. S. (1976) Freeze-substitution applied to the study of quick-frozen synapses.Journal of Cell Biology 70, 357a.

    Google Scholar 

  • HEUSER, J. E., REESE, T. S. & LANDIS, D. M. D. (1976) Preservation of synaptic structures by rapid freezing.Cold Spring Harbor Symposia on Quantitative Biology 40, 17–24.

    PubMed  Google Scholar 

  • HIROKAWA, N. & KIRINO, T. (1980) A ultrastructural study of nerve and glial cells by freeze-substitution.Journal of Neurocytology 9, 243–54.

    PubMed  Google Scholar 

  • ICHIMURA, T. & HASHIMOTO, P. H. (1982) Three dimensional fine structure of elastic fibers in the perivascular space of some circumventricular organs as revealed by high-voltage electron microscopy.Journal of Ultrastructure Research 81, 172–83.

    PubMed  Google Scholar 

  • ICHIMURA, T. & HASHIMOTO, P. H. (1984) Fine structure of basement membranes of the capillary endothelium and perivascular astrocyte in some circumventricular organs by three-dimensional SEM.Journal of Ultrastructure Research 86, 220–7.

    PubMed  Google Scholar 

  • ICHIMURA, T. & HASHIMOTO, P. H. (1986) Rapid freeze, deep etching visualization of membrane specializations and submembraneous structures in synapses of the rat spinal cord.Proceedings of the XIth Congress on Electron Microscopy 4, 3183–4.

    Google Scholar 

  • ITO, M. (1984)The Cerebellum and Neural Control. New York: Raven Press.

    Google Scholar 

  • LANDIS, D. M. D. & REESE, T. S. (1974) Differences in membrane structure between excitatory and inhibitory synapse in the cerebellar cortex.Journal of Comparative Neurology 155, 93–126.

    PubMed  Google Scholar 

  • LANDIS, D. M. D. & REESE, T. S. (1983) Cytoplasmic organization in cerebellar dendritic spines.Journal of Cell Biology 97, 1169–78.

    PubMed  Google Scholar 

  • MATUS, A. I. (1981) The postsynaptic density.Trends in Neuroscience 4, 51–3.

    Google Scholar 

  • MATUS, A. WILKINSON, D. & PEHLING, G. (1981) γ-Aminobutyric acid receptors in brain postsynaptic densities.Journal of Neurocytology 12, 67–73.

    Google Scholar 

  • MATUS, A. & WALTERS, B. B. (1975) Ultrastructure of the synaptic junctional lattice isolated from mammalian brain.Journal of Neurocytology 4, 369–75.

    PubMed  Google Scholar 

  • MATUS, A. & WALTERS, B. B. (1976) Type 1 and type 2 synaptic junctions: differences in distribution of concanavalin A binding sites and stability of the junctional adhesion.Brain Research 108, 249–56.

    PubMed  Google Scholar 

  • MEYER, W. J. (1969) Phosphotungstic acid section staining of synaptic junctions of rat brain.Journal of Cell Biology 43, 92a.

    Google Scholar 

  • PALAY, S. L. (1958) The morphology of synapses in the central nervous system.Experimental Cell Research, Suppl.5, 275–93.

    Google Scholar 

  • PALAY, S. L. & CHAN-PALAY, V. (1974)Cerebellar Cortex: Cytology and Organization. Berlin: Springer-Verlag.

    Google Scholar 

  • PAPPAS, G. D. & PURPURA, D. P. (1966) Distribution of colloidal particles in extracellular space and synaptic cleft substance of mammalian cerebral cortex.Nature 210, 1391–2.

    PubMed  Google Scholar 

  • PEASE, D. C. (1966) Polysaccharides associated with the exterior surface of epithelial cells: kidney, intestine, brain.Journal of Ultrastructure Research 15, 555–88.

    PubMed  Google Scholar 

  • PFENNINGER, K. H. (1971a) The cytochemistry of synaptic densities. I. An analysis of the Bismuth Iodide impregnation method.Journal of Ultrastructure Research 34, 103–22.

    PubMed  Google Scholar 

  • PFENNINGER, K. H. (1971b) The cytochemistry of synaptic densities. II. Proteinaceous components and mechanism of synaptic connectivity.Journal of Ultrastructure Research 35, 451–75.

    PubMed  Google Scholar 

  • PFENNINGER, K. H., AKERT, K., MOOR, H. & SANDRI, C. (1972) The fine structure of freeze-fractured presynaptic membranes.Journal of Neurocytology 1, 129–49.

    PubMed  Google Scholar 

  • PFENNINGER, K. H., SANDRI, C., AKERT, K. & EUGSTER, C. H. (1969) Contribution to the problem of structural organization of the presynaptic area.Brain Research 12, 10–18.

    PubMed  Google Scholar 

  • RAHMAN, H., ROSNER, H. & BREER, H. (1976) A functional model of sialo-glycomacromolecules in synaptic transmission and memory formation.Journal of Theoretical Biology 57, 231–7.

    PubMed  Google Scholar 

  • SANDRI, C., AKERT, K., LIVINGSTON, R. B. & MOOR, H. (1972) Particle aggregations at specialized sites in freeze-etched postsynaptic membranes.Brain Research 41, 1–16.

    PubMed  Google Scholar 

  • SCHNAPP, B. J. & REESE, T. S. (1982) Cytoplasmic structure in rapid-frozen axons.Journal of Cell Biology 94, 667–79.

    PubMed  Google Scholar 

  • SUZUKI, T. & TANAKA, R. (1984) Synaptic junctional proteins located in synaptic cleft.Nagoya Medical Journal 29, 173–83.

    Google Scholar 

  • VAN DER LOOS, H. (1963) Fine structure of synapses in the cerebral cortex.Zeitschrift für Zellforschung und mikroskopische Anatomie 60, 815–25.

    Google Scholar 

  • WESTRUM, L. E. & LUND, R. D. (1966) Formalin perfusion for correlative light- and electron-microscopical studies of the nervous system.Journal of Cell Science 1, 229–238.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ichimura, T., Hashimoto, P.H. Structural components in the synaptic cleft captured by freeze-substitution and deep etching of directly frozen cerebellar cortex. J Neurocytol 17, 3–12 (1988). https://doi.org/10.1007/BF01735373

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01735373

Keywords

Navigation