Skip to main content
Log in

Fast charge translocations associated with partial reactions of the Na,K-pump: I. Current and voltage transients after photochemical release of ATP

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Nonstationary electric currents are described which are generated by the Na,K-pump. Flat membrane sheets 0.2–1 μm in diameter containing a high density of oriented N,K-ATPase molecules are bound to a planar lipid bilayer acting as a capacitive electrode. In the aqueous phase adjacent to the bound membrane sheets, ATP is released within milliseconds from an inactive, photolabile precursor (“caged” ATP) by an intense flash of light. After the ATP-concentration jump, transient current and voltage signals can be recorded in the external circuit corresponding to a translocation of positive charge across the pump protein from the cytoplasmic to the extracellular side. These electrical signals which can be suppressed by inhibitors of the Na,K-ATPase require the presence of Na+ but not of K+ in the aqueous medium. The intrinsic pump currentI p (t) can be evaluated from the recorded current signal, using estimated values of the circuit parameters of the compound membrane system.I p (t) exhibits a biphasic behavior with a fast rising period, followed by a slower decline towards a small quasistationary current. The time constant of the rising phase ofI p (t) is found to depend on the rate of photochemical ATP release. Further information on the microscopic orgin of the current transient can be obtained by double-flash experiments and by chymotrypsin modification of the protein. These and other experiments indicate that the observed charge-translocation is associated with early events in the normal transport cycle. After activation by ATP, the pump goes through the first steps of the cycle and then enters a long-lived state from which return to the initial state is slow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abercrombie, R., De Weer, P. 1978. Electric current generated by squid giant axon: External K and internal ADP effects.Am. J. Physiol. 235:C63-C68

    PubMed  Google Scholar 

  • Akera, T. 1981. Effects of cardiac glycosides on Na+, K+-ATPase.In: Handbook of Experimental Pharmacology. Vol 56/I, pp. 287–336. K. Greef, editor. Springer, Berlin

    Google Scholar 

  • Apell, H.-J., Borlinghaus, R., Läuger, P. 1987. Fast charge translocations associated with partial reactions of the Na,K-pump: II. Microscopic analysis of transient currents.J. Membrane Biol. 97:179–191

    Google Scholar 

  • Apell, H.-J., Marcus, M.M. 1986. Na,K-ATPase in artificial lipid vesicles: Influence of the concentration of mono- and divalent cations on pumping rate.Biochim. Biophys. Acta 862:254–264

    PubMed  Google Scholar 

  • Apell, H.-J., Marcus, M.M., Anner, B.M., Oetliker, H., Läuger, P. 1985. Optical study of active ion transport in lipid vesicles containing reconstituted Na,K-ATPase.J. Membrane Biol. 85:49–63

    Google Scholar 

  • Benz, R., Janko, K. 1976. Voltage-induced capacitance relaxation of lipid bilayer membranes. Effects of membrane composition.Biochim. Biophys. Acta 455:721–738

    PubMed  Google Scholar 

  • Cantley, L.C. 1981. Structure and mechanism of the (Na,K)-ATPase.Curr. Top. Bioenerg. 11:201–237

    Google Scholar 

  • Chapman, J.B., Johnson, E.A., Kootsey, J.M. 1983. Electrical and biochemical properties of an enzyme model of the sodium pump.J. Membrane Biol. 74:139–153

    Google Scholar 

  • Deguchi, N., Jørgensen, P.L., Maunsbach, A.B. 1977. Ultrastructure of the sodium pump. Comparison of thin sectioning, negative staining and freeze-fracture of purified, memrbane-bound (Na+,K+)-ATPase.J. Cell. Biol. 75:619–634

    PubMed  Google Scholar 

  • De Luca, M., McElroy, W.D. 1978. Purification and properties of firefly luciferase.Methods Enzymol. 57:3–15

    Google Scholar 

  • De Weer, P. 1984. Electrogenic pumps: Theoretical and practical considerations.In: Electrogenic Transport: Fundamental Principles and Physiological Implications M.P. Blaustein and M. Lieberman, editors. pp. 1–15, Raven, New York

    Google Scholar 

  • De Weer, P., Gadsby, D.C. Rakowski, R.F. 1987. Voltage dependence of Na/K pump-mediated22Na efflux and current in squid giant axon.J. Physiol. (London) (in press)

  • De Weer, P., Rakowski, R.F. 1984. Current generated by backward-running electrogenic Na pump in squid giant axons.Nature (London) 309:450–452

    Google Scholar 

  • Drachev, L.A., Jasaitis, A.A., Kaulen, A.D., Kondrashin, A.A., Liberman, N.A., Nemecek, I.B., Ostroumov, S.A., Semenov, A.Yu., Skulachev, V.P. 1974. Direct measurement of electric current generation by cytochrome oxidase, H+-ATPase and bacteriorhodopsin.Nature (London) 249:321–324

    Google Scholar 

  • Eisner, D.A., Lederer, W.J. 1980. Characterization of the electrogenic sodium pump in cardiac Purkinje fibres.J. Physiol. (London) 303:441–474

    Google Scholar 

  • Ernst, A., Böhme, H., Böger, P. 1983 Phosphorylation and introgenase activity in isolated heterocytes fromAnabaena variabilis.Biochim. Biophys. Acta 723:83–90

    Google Scholar 

  • Fahr, A., Läuger, P., Bamberg, E., 1981. Photocurrent kinetics of purple-membrane sheets bound to planar bilayer membranes.J. Membrane Biol. 60:51–62

    Google Scholar 

  • Fendler, K., Grell, E., Haubs, M., Bamberg, E. 1985. Pump currents generated by the purified Na+, K+-ATPase from kidney on black lipid membranes.EMBO J. 4:3079–3085

    PubMed  Google Scholar 

  • Forbush, B., III. 1984. Na+ movement in a single turnover of the Na pump.Proc. Natl. Acad. Sci. USA 81:5310–5314

    PubMed  Google Scholar 

  • Forbush, B. III. 1985. Rapid ion movements in a single turnover of the Na+ pump.In: The Sodium Pump. I. Glynn and C.L. Ellory, editors. pp. 599–611. Company of Biologists, Cambridge, U.K.

    Google Scholar 

  • Frank, P., Mises, R. von 1961. Die Differential- und Integralgleichungen der Mechanik und Physik. Vol. 2, p. 555. Dover, New York

    Google Scholar 

  • Gadsby, D.C. 1984. The Na/K pump of cardiac cells.Annu. Rev. Biophys. Bioeng. 13:373–398

    PubMed  Google Scholar 

  • Gadsby, D.C., Kimura, J., Noma A. 1985. Voltage dependence of Na/K pump current in isolated heart cells.Nature (London) 315:63–65

    Google Scholar 

  • Glitsch, H.G., Pusch, H., Schumacher, T., Verdonck, F. 1982. An identification of the K activated Na pump current in sheep Purkinje fibres.Pfluegers Arch. 394:256–263

    Google Scholar 

  • Glynn, I.M. 1984. The electrogenic sodium pump.In: M.P. Blaustein and M. Lieberman, editors. pp. 33–48. Raven Press, New York

    Google Scholar 

  • Glynn, I.M. 1985. The Na+, K+-transporting adenosine triphosphatase.In: The Enzymes of Biological Membranes. (2nd ed.) Vol. 3. pp. 35–114. A.N. Martonosi, editor. Plenum, New York

    Google Scholar 

  • Glynn, I.M., Hara, Y., Richards, D.E. 1984. The occlusion of sodium ions within the mammalian sodium-potassium pump: Its role in sodium transport.J. Physiol. (London) 351:531–547

    Google Scholar 

  • Glynn, I.M., Karlish, S.J.D. 1976. ATP hydrolysis associated with an uncoupled sodium flux through the sodium pump: Evidence for allosteric effects of intracellular ATP and extracellular sodium.J. Physiol. (London) 256:465–496

    Google Scholar 

  • Goldman, Y.E., Hibberd, M.G., Trentham, D.R. 1984. Relaxation of rabbit psoas muscle fibres from rigor by photochemical generation of adenosine-5′-triphosphate.J. Physiol. (London) 354:577–604

    Google Scholar 

  • Hansen, U.-P., Gradmann, D., Sanders, D., Slayman, C.L. 1981. Interpretation of current-voltage relationphips for “active” ion transport systems: I. Steady-state reaction-kinetic analysis of class-I mechanisms.J. Membrane Biol. 63:165–190

    Google Scholar 

  • Hasuo, H., Koketsu, K. 1985. Potential dependency of the electrogenic Na+-pump current in bullfrog atrial muscle.Jpn. J. Physiol. 35:89–100

    PubMed  Google Scholar 

  • Hebert, H., Jørgensen, P.L., Skriver, E., Maunsbach, A.B. 1982. Crystallization patterns of membrane-bound (Na++K+)-ATPase.Biochim. Biophys. Acta 689:571–574

    PubMed  Google Scholar 

  • Herrmann, T.R., Rayfield, G.W. 1978. The electrical response to light of bacteriorhodopsin in planar membranes.Biophys. J. 21:111–125

    PubMed  Google Scholar 

  • Hong, F.T., Montal, M. 1979. Bacteriorhodopsin in model membranes. A new component of the displacement photocurrent in the microsecond time scale.Biophys. J. 25:465–472

    PubMed  Google Scholar 

  • Isenberg, G., Trautwein, W. 1974. The effect of dihydroouabain and lithium ions on the outward current in cardiac Purkinje fibers.Pfluegers Arch. 350:41–54

    Google Scholar 

  • Jørgensen, P.L. 1974. Isolation of the (Na++K+)-ATPase.Methods Enzymol. 32:277–290

    PubMed  Google Scholar 

  • Jøgensen, P.L., 1982. Mechanism of the Na+,K+ pump. Protein structure and conformations of the purified (Na+K+)-ATPase.Biochim. Biophys. Acta 694:27–68

    PubMed  Google Scholar 

  • Jørgensen, P.L., Collins, J.H. 1986. Tryptic and chymotryptic cleavage sites in the sequence of α-subunit of (Na++K+)-ATPase from outer medulla of mammalian kidney.Biochim. Biophys. Acta 860:570–576

    PubMed  Google Scholar 

  • Jørgensen, P.L., Petersen, J. 1985. Chymotryptic cleavage of α-subunit in E1-forms of renal (Na++K+)-ATPase: Effects on enzymatic properties, ligand binding and cation exchange.Biochim. Biophys. Acta 821:319–333

    PubMed  Google Scholar 

  • Kaplan, J.H., III, B., Forbush, Hoffman, J.F. 1978. Rapid photolytic release of adenosine-5′-triphosphate from a protected analogue: Utilization by the Na∶K pump of human red blood cell ghosts.Biochemistry 17:1929–1935

    PubMed  Google Scholar 

  • Karlish, S.J.D., Kaplan, J.H. 1985. Pre-steady-state kinetics of Na+ transport through the Na,K-pump.In: The Sodium Pump. I. Glynn and C.L. Ellory, editors, pp. 501–506. Company of Biologists, Cambridge, U.K.

    Google Scholar 

  • Karlish, S.J.D., Yates, D.W., Glynn, I.M. 1978. Elementary steps of the (Na++K+-ATPase mechanism, studied with formycin nucleotides.Biochim. Biophys. Acta 525:230–251

    PubMed  Google Scholar 

  • Keszthelyi, L., Ormos, P. 1980. Electrical signals associated with the photocycle of bacteriorhodopsin.FEBS Lett. 109:189–193

    Google Scholar 

  • Lafaire, A.V., Schwarz, W. 1986. Voltage dependence of the rheogenic Na+/K+-ATPase in the membrane of oocytes ofXenopus laevis.J. Membrane Biol. 91:43–51

    Google Scholar 

  • Läuger, P., Apell, H.-J. 1986. A microscopic model for the current-voltage behaviour of the Na,K-pump.Eur. Biophys. J. 13:309–321

    Google Scholar 

  • Läuger, P., Lesslauer, W., Marti, E., Richter, J. 1967. Electrical properties of bimolecular phospholipid membranes.Biochim. Biophys. Acta 135:20–32

    PubMed  Google Scholar 

  • Lederer, W.J., Nelson, M.T. 1984. Sodium pump stoichiometry determined by simultaneous measurements of sodium efflux and membrane current in barnacle.J. Physiol. (London) 348:665–677

    Google Scholar 

  • Liébecq, C., Lallemand, A., Degueldre-Guillaume, M.-J. 1963. Purification partielle et propriétés de l'apyrase de la pomme de terre.Bull. Soc. Chim. Biol. 45:573–594

    PubMed  Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurement with the Folin phenol reagents.J. Biol. Chem. 193:265–275

    PubMed  Google Scholar 

  • Mårdh, S., Post, R.L. 1977. Phosphorylation from adenosine triphosphate of sodium- and potassium-activated adenosine triphosphatase.J. Biol. Chem. 252:633–638

    PubMed  Google Scholar 

  • McCray, J.A., Herbette, L., Kihara, T., Trentham, D.R. 1980. A new approach to time-resolved studies of ATP-requiring biological systems: Laserflash photolysis of caged ATP.Proc. Natl. Acad. Sci. USA 77:7237–7241

    PubMed  Google Scholar 

  • McLaughlin, S.G.A., Dilger, J.P. 1979. The transport of protons across membranes by weak acids.Physiol. Rev. 60:825–863

    Google Scholar 

  • Meunier, J.M., Tauc, L. 1970. Participation d'une pompe métabolique auf potential de repos de neurones d'aplysie.J. Physiol. (Paris) 62:192c-193c

    Google Scholar 

  • Nakao, M., Gadsby, D.C. 1986. Voltage dependence of Na translocation by the Na/K pump.Nature (London) 323:628–630

    Google Scholar 

  • Nakashima, S., Takahashi, K. 1966. Post-tetanic hyperpolarization and electrogenic Na pump in stretch receptor neuron of crayfish.J. Physiol. (London) 187:105–127

    Google Scholar 

  • Reynolds, J.A., Johnson, E.A., Tanford, C. 1985. Incorporation of membrane potential into theoretical analysis of electrogenic ion pumps.Proc. Natl. Acad. Sci. USA 82:6869–6873

    PubMed  Google Scholar 

  • Robinson, J.D., Flashner, M.S. 1979. The (Na++K+)-activated ATPase. Enzymatic and transport properties.Biochim. Biophys. Acta 549:145–176

    PubMed  Google Scholar 

  • Sachs, J.R. 1970. Sodium movements in the human red cell.J. Gen. Physiol. 56:322–341

    PubMed  Google Scholar 

  • Sandeaux, R., Seta, P., Jeminent, G., Alleaume, M., Gavach, Cl. 1978. The influence of pH on the conductance of lipid bimolecular membranes in relation to the alkaline ion transport induced by carboxylic carriers grisorixin, alborixin and monensin.Biochim. Biophys. Acta 511:499–508

    PubMed  Google Scholar 

  • Schuurmans-Stekhoven, F., Bonting, S.L. 1981. Transport adenosin-triphosphatases: Properties and function.Physiol. Rev. 61:1–76

    PubMed  Google Scholar 

  • Schwartz, A., Nagano, K., Nakao, M., Lindenmayer, G.E., Allen, J.C. 1971. The sodium- and potassium-activated adenosinetriphosphatase system.Methods Pharmacol. 1:361–388

    Google Scholar 

  • Skou, J.C. 1975. The (Na++K+) activated enzyme system and its relationship to transport of sodium and potassium.Q. Rev. Biophys. 7:401–431

    Google Scholar 

  • Skriver, E., Maunsbach, A.B., Jørgensen, P.L. 1981. Formation of two-dimensional crystals in pure membrane-bound Na+, K+-ATPase.FEBS Lett. 131:219–222

    PubMed  Google Scholar 

  • Trissl, H.-W. 1985. Primary electrogenic processes in bacteriorhodopsin probed by photoelectric measurements with capacitive metal electrodes.Biochim. Biophys. Acta 806:124–135

    Google Scholar 

  • Zampighi, G., Simon, S.A., Kyte, J., Kreman, M. 1986. Onedimensional crystals of (Na++K+)-ATPase dimers.Biochim. Biophys. Acta 854:45–57

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borlinghaus, R., Apell, H.J. & Läuger, P. Fast charge translocations associated with partial reactions of the Na,K-pump: I. Current and voltage transients after photochemical release of ATP. J. Membrain Biol. 97, 161–178 (1987). https://doi.org/10.1007/BF01869220

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869220

Key Words

Navigation