Skip to main content
Log in

Hyperinsulinemia, hyperproinsulinemia and insulin resistance in the metabolic syndrome

  • Multi-Author Reviews
  • Published:
Experientia Aims and scope Submit manuscript

Abstract

For better comprehension of the metabolic syndrome, it is necessary to differentiate the effect of insulin on glucose metabolism on the one hand, and on other metabolic activities on the other hand. Whereas glucose utilization is affected by insulin resistance, the effect of insulin on lipid metabolism, ion and aminoacid transport does not seem to be diminished. Lipid metabolism, however, seems to play a crucial role in the induction of the vicious cycle. Increased energy and fat ingestion may be due to an increased number of galanin secreting cells in the hypothalamus. The excessive fat intake results in an increased rate of release of insulin and increased influx of triglycerides into the blood. From these triglycerides an excess of free fatty acids is released by the action of lipoprotein lipase. The increased plasma free fatty acid level then results in insulin resistance affecting glucose metabolism. Also, these free fatty acids may impair the secretion of insulin. Induction of insulin resistance results in higher glucose levels, which may cause hyperinsulinemia. Hyperinsulinemia maintains the elevation of triglycerides. When diabetes becomes overt and elevated glucose levels prevail, the hyperinsulinism acts on the metabolic pathways which are still sensitive to insulin, namely lipid metabolism, aminoacid transport and ion transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

HDL:

high density lipoproteins

NIDDM:

non-insulin dependent diabetes mellitus

oGTT:

oral glucose tolerance test

oMTT:

oral metabolic tolerance test

VLDL:

very low density lipoproteins

WHR:

waist-hip ratio

References

  1. Boden, G., Chen, X., Ruiz, J., White, J. V., and Rossetti, L., Mechanisms of fatty acid-induced inhibition of glucose uptake. J. clin. Invest.93 (1994) 2438–2446.

    PubMed  Google Scholar 

  2. De Fronzo, R. A., Cooke, C. R., Andres, R., Faloona, G. R., and Davis, P. J., The effect of insulin on renal handling of sodium, potassium, calcium and phosphate in man. J. clin. Invest.55 (1975) 845–855.

    PubMed  Google Scholar 

  3. De Fronzo, R. A., and Ferrannini, E., Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia and atherosclerotic cardiovascular disease. Diab. Care14 (1991) 173–194.

    Google Scholar 

  4. Fenselau, S., Diba, A., Keppler, I., Weber, P., Marz, W., Beyer, J., and Schrezenmeir, J., Apolipoprotein phenotypes in NIDDM, high and normal triglyceride responders. Diabetologia37 (Suppl. 1) (1994) A 86.

    Google Scholar 

  5. Ferrannini, E., Barett, E. J., Bevilacquas, and De Fronzo, R. A., Effect of fatty acids on glucose production and utilisation in man. J. clin. Invest.72 (1983) 1737–1747.

    PubMed  Google Scholar 

  6. Fraze, E., Donner, C. C., and Swislocki, A. L. M., Ambient plasma free fatty acid concentrations in NIDDM: evidence for insulin resistance. J. clin. Endocrin. Metab.61 (1985) 807–811.

    Google Scholar 

  7. Jain, S. K., Nagi, D. K., Slavin, B. M., Lumb, P. J., and Yudkin, J. S., Insulin therapy in type 2 diabetic subjects suppresses plasminogen activator inhibitor (pai-1) and proinsulin like molecules independently of glycaemic control. Diab. Med.10 (1993) 27–32.

    Google Scholar 

  8. Levy, J. C., Clark, P. M., Hales, C. N., and Turner, C., Normal proinsulin responses to glucose in mild type II diabetic subjects with subnormal insulin response. Diabetes42 (1993) 162–169.

    PubMed  Google Scholar 

  9. Nagi, D. K., Hendra, T. J., Ryle, A. J., Cooper, T. M., Temple, R. C., Clark, P. M. S., Schneider, A. E., Hales, C. N., and Yudkin, J. S., The relationship of concentrations of insulin, intact proinsulin and 32–33 split proinsulin with cardiovascular risk factors in type 2 (non-insulin-dependent) diabetic subjects. Diabetologia33 (1990) 532–537.

    Article  PubMed  Google Scholar 

  10. Orth, B., Schrezenmeir, J., Fenselau, S., Hauck, Ch., Hammerschmidt, K. H., and Beyer, J., Oral lipid tolerance test (oLT) detects the constellation of the metabolic syndrome before oral glucose tolerance (oGT) is impaired. Diabetologia37 (Suppl. 1) (1994) A 146.

    Google Scholar 

  11. Reaven, G., Chen, X. D., Hollenbeck, C. B., Sheu, W. H., and Ostrega, D., Polensky, K. S., Plasma insulin, C-Peptide and proinsulin concentration in obese and non obese individuals with varying degrees of glucose tolerance. J. clin. Endocrin. Metab.76 (1993) 44–48.

    Article  Google Scholar 

  12. Schrezenmeir, J., Weber, P., Probst, R., Biesalski, H. K., Luley, C., Prellwitz, W., Krause, U., and Beyer, J., Postprandial pattern of triglyceride-rich lipoprotein in normal-weight humans after an oral lipid load: exaggerated triglycerides and altered insulin response in some subjects. Ann. Nutr. Metab.36 (1992) 186–196.

    PubMed  Google Scholar 

  13. Schrezenmeir, J., Keppler, I., Fenselau, S., Weber, P., Biesalski, H. K., Probst, R., Laue, C., Zuchhold, H. D., Prellwitz, W., and Beyer, J., The phenomenon of a high triglyceride response to an oral lipid load in healthy subjects and its link to the metabolic syndrome. Ann. N.Y. Acad. Sci.683 (1993) 302–314.

    PubMed  Google Scholar 

  14. Schrezenmeir, J., Keppler, I., Abel, J., Fenselau, S., Weber, P., and Beyer, J., Dissociation of insulin sensitivity towards glucose and fat metabolism at an early stage of the metabolic syndrome. Int. J. Obesity17 (Suppl. 2) (1993) 97.

    Google Scholar 

  15. Schrezenmeir, J., Clark, P., Fenselau, S., Abel, J., Beyer, J., and Hales, C. N., Incomplete proinsulin processing in subjects with postprandial high triglyceride response (premetabolic syndrome). Exp. clin. Endocr.102 (Suppl. 2) (1994) 175.

    Google Scholar 

  16. Schrezenmeir, J., Fenselau, S., Strausberger, B., and Schandl, L., Association of increased adrenal reactivity with abdominal adipose tissue, high postprandial triglyceride response and increased dietary induced thermogenesis. Exp. clin. Endocr.103 (Suppl. 1) (1995) 82.

    Google Scholar 

  17. Schrezenmeir, J., Koffler, Th., Busch, D., Bohl, J., and Strack, T., Increased expression of galanin in nucleus arcuatus hypothalami may play a pathogenetic role in NIDDM. Int. J. Obes.17 (Suppl. 2) (1993) 66.

    Google Scholar 

  18. Singer, P., Godicke, W., Voigt, S., Hajdu, I., and Weiss, M., Postprandial hyperinsulinemia in patients with mild essential hypertension, Hypertension7 (1985) 182–186.

    PubMed  Google Scholar 

  19. Stout, R. W., Development of vascular lesions in insulin treated animals fed a normal diet. Brit. med. J.3 (1970) 685–687.

    PubMed  Google Scholar 

  20. Stout, R. W., Bierman, E. L., and Rioss, R., Effect of insulin on the proliferation of cultured primate arterial smooth muscle cell. Circ. Res.36 (1975) 319–327.

    PubMed  Google Scholar 

  21. Stout, R. W., Diabetes and atherosclerosis, the role of insulin. Diabetologia16 (1979) 141–150.

    Article  PubMed  Google Scholar 

  22. Stout, R. W., Insulin and atheroma: 20-year perspective. Diab. Care13 (1990) 631–654.

    Google Scholar 

  23. Taggart, H., and Stout, R. W., Control of DNA synthesis in cultured vascular endothelial and smooth muscle cells. Atherosclerosis37 (1980) 549–557.

    PubMed  Google Scholar 

  24. Temple, R. C., Carrington, C. A., Luzio, S. D., Owens, D. R., Schneider, A. E., Sobey, W. J., and Hales, C. N., Insulin deficiency in NIDDM. Lancet1 (1989) 293–295.

    Article  PubMed  Google Scholar 

  25. Tshunehara, C. H., Leonetti, D. J., and Fujimoto, W. Y., Diet of second-generation Japanese-American men with and without now insulin dependent diabetes. Am. J. clin. Nutr.52 (1990) 731–738.

    PubMed  Google Scholar 

  26. Zhou, Y. P., and Grill, V. E., Long term exposure of rat pancreatic islets to fatty acids inhibits glucose-induced insulin secretion and biosynthesis through a glucose fatty acid cycle. J. clin. Invest.93 (1994) 870–876.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schrezenmeir, J. Hyperinsulinemia, hyperproinsulinemia and insulin resistance in the metabolic syndrome. Experientia 52, 426–432 (1996). https://doi.org/10.1007/BF01919311

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01919311

Key words

Navigation