Skip to main content
Log in

Using fractals to understand the opening and closing of ion channels

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Looking at an old problem from a new perspective can sometimes lead to new ways of analyzing experimental data which may help in understanding the mechanisms that underlie the phenomena. We show how the application of fractals to analyze the patch clamp recordings of the sequence of open and closed times of cell membrane ion channels has led to a new description of ion channel kinetics. This new information has led to new models that imply: (a) ion channel proteins have many conformational states of nearly equal energy minima and many pathways connecting one conformational state to another, and (b) that these many states are not independent but are linked by physical mechanisms that result in the observed fractal scaling. The first result is consistent with many experiments, simulations, and theories of globular proteins developed over the last decade. The second result has stimulated the suggestion of several different physical mechanisms that could cause the fractal scalings observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Agmon, N.; Hopfield, J.J. CO binding to heme proteins: a model for height distributions and slow conformational changes. J. Chem. Phys. 79:2042–2053; 1983.

    Article  CAS  Google Scholar 

  2. Austin, R.H.; Beeson, K.W.; Eisenstein, L.; Frauenfelder, H.; Gunsalus, I.C. Dynamics of ligand binding to myoglobin. Biochem. 14:5355–5373; 1975.

    CAS  Google Scholar 

  3. Barnsley, M. Fractals everywhere. New York: Academic Press; 1988.

    Google Scholar 

  4. Barrow, G.M. Physical chemistry, 4th Ed. New York: McGraw Hill; 1961.

    Google Scholar 

  5. Bezanilla, F.; Parsegian, V.A.; Zimmerberg, J. Solute inaccessible aqueous volume changes during opening of the potassium channel of the giant squid axon. Biophys. J. 53:545a; 1988.

    Google Scholar 

  6. Blank, M. The surface compartment model: theory of ion transport focused on ionic processes in the electrical double layers at membrane protein surfaces. Biochim. Biophys. Acta 906:277–294; 1987.

    CAS  PubMed  Google Scholar 

  7. Blatz, A.L.; Magleby, K.L. Quantitative description of three modes of activity of fast chloride channels from rat skeletal muscle. J. Physiol. 378:141–174; 1986.

    CAS  PubMed  Google Scholar 

  8. Careri, G.; Fasella, P.; Gratton, E. Statistical time events in enzymes: a physical assessment. CRC Crit. Rev. Biochem. 3:141–164; 1975.

    CAS  PubMed  Google Scholar 

  9. Carslaw, H.S.; Jaeger, J.C. Conduction of Heat in Solids, 2nd Ed. Oxford: Clarendon Press; 1989.

    Google Scholar 

  10. Catterall, W.A. Structure and function of voltage-sensitive ion channels. Science 242:50–61; 1988.

    CAS  PubMed  Google Scholar 

  11. Condat, C.A.; Jäckle, J. Closed time distribution of ionic channels—analytic solution to a one-dimensional defection diffusion model. Biophys. J. 55:915–925; 1989.

    CAS  PubMed  Google Scholar 

  12. Cox, D.R. Renewal theory. London: Science Paperbacks; 1962.

    Google Scholar 

  13. Croxton, T.L. A model of the gating of ion channels. Biochem. Biophys. Acta 946:19–24; 1988.

    CAS  PubMed  Google Scholar 

  14. Farmer, J.D.; Toffoli, T.; Wolfram, S., Eds. Proceedings of an interdisciplinary workshop on cellular automata. Physica D, 10D:1–247; 1984.

  15. Fishman, H.M. Relaxations, fluctuations and ion transfer across membranes. Prog. Biophys. Molec. Biol. 46:127–162; 1985.

    Article  CAS  Google Scholar 

  16. Fitzhugh, R. Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1:445–466; 1961.

    Google Scholar 

  17. French, A.S.; Stockbridge, L.L. Fractal and Markov behavior in ion channel kinetics. Can. J. Physiol. Pharm. 66:967–970; 1988.

    CAS  Google Scholar 

  18. French, A.S.; Stockbridge, L.L. Potassium channels in human and avian fibroblasts. Proc. R. Soc. Lond. B 232:395–412; 1988.

    CAS  PubMed  Google Scholar 

  19. Glass, L.; Mackey, M.C. From clocks to chaos. Princeton, NJ: Princeton University Press; 1988.

    Google Scholar 

  20. Gleick, J. Chaos: Making a new science. New York: Viking; 1987.

    Google Scholar 

  21. Hille, B. Ionic channels of excitable membranes. Sunderland, MA: Sinauer Associates; 1984.

    Google Scholar 

  22. Hodgkin, A.L.; Huxley, A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117:500–544; 1952.

    CAS  PubMed  Google Scholar 

  23. Karplus, M.; McCammon, J.A. The internal dynamics of globular proteins. CRC Crit. Rev. Biochem. 9:293–349; 1981.

    CAS  PubMed  Google Scholar 

  24. Läuger, P. Internal motions in proteins and gating kinetics of ionic channels. Biophys. J. 53:877–884; 1988.

    PubMed  Google Scholar 

  25. Leuchtag, H.R. Indications of the existence of ferroelectric units in excitable-membrane channels. J. Theor. Biol. 127:321–340; 1987.

    CAS  PubMed  Google Scholar 

  26. Leuchtag, H.R. Phase transitions and ion currents in a model ferroelectric channel unit. J. Theor. Biol. 127:341–359; 1987.

    CAS  PubMed  Google Scholar 

  27. Levitt, D.G. Continuum model of voltage dependent gating. Biophys. J. 55:489–498; 1989.

    CAS  PubMed  Google Scholar 

  28. Liebovitch, L.S.; Fischbarg, J.; Koniarek, J.P.; Todorova, I.; Wang, M. Fractal model of ion-channel kinetics. Biochem. Biophys. Acta. 896:173–180; 1987.

    CAS  PubMed  Google Scholar 

  29. Liebovitch, L.S.; Fischbarg, J.; Koniarek, J.P. Ion channel kinetics: a model based on fractal scaling rather than multistate Markov processes. Math. Biosci. 84:37–68; 1987.

    Article  Google Scholar 

  30. Liebovitch, L.S.; Sullivan, J.M. Fractal analysis of a voltage-dependent potassium channel from cultured mouse hippocampal neurons. Biophys. J. 52:979–988; 1987.

    CAS  PubMed  Google Scholar 

  31. Liebovitch, L.S. The fractal random telegraph signal: signal analysis and applications. Ann. Biomed. Engr. 16:483–494; 1988.

    CAS  Google Scholar 

  32. Liebovitch, L.S. Testing fractal and Markov models of ion channel kinetics. Biophys. J. 55:373–377; 1989.

    CAS  PubMed  Google Scholar 

  33. Liebovitch, L.S. Introduction to the properties and analysis of fractal objects, processes, and data. In Marmarelis, V.Z., ed. Advanced Methods of Physiological Systems Modeling Vol. 2. New York: Plenum; 1989:pp. 225–239.

    Google Scholar 

  34. Liebovitch, L.S. Analysis of fractal ion channel gating kinetics: kinetic rates, energy levels, and activation energies. Math. Biosci. 93:97–115; 1989.

    Article  CAS  PubMed  Google Scholar 

  35. Liebovitch, L.S.; Tóth, T.I. A model of ion channel kinetics using deterministic chaotic rather than stochastic processes. Submitted to Biophys. J.

  36. Liebovitch, L.S. Methods of chaos applied to study single channel currents and epithelial ion transport. Invest. Ophthal. Vis. Sci. Suppl. 30:342; 1989.

    Google Scholar 

  37. Machlup, S. Noise in semiconductors: spectrum of a two-parameter random signal. J. Appl. Phys. 25:341–343; 1954.

    Article  Google Scholar 

  38. Machlup, S. Earthquakes, thunderstorms, and other 1/f noises. In Meijer, P.; Mountain, R.; Soulen, R., Jr. eds. Sixth International Conference on Noise in Physical Systems. National Bureau of Standards. Washington, DC: pp. 157–160; 1981.

    Google Scholar 

  39. Mandelbrot, B.B. The fractal geometry of nature. San Francisco: W.H. Freeman and Co.; 1983.

    Google Scholar 

  40. McCammon, J.A.; Harvey, S.C. Dynamics of proteins and nucleic acids. New York: Cambridge University Press; 1987.

    Google Scholar 

  41. Millhauser, G.L.; Salpeter, E.E.; Oswald, R.E. Diffusion models of ion-channel gating and the origin of the power-law distributions from single-channel recording. Proc. Natl. Acad. Sci. USA 85:1503–1507; 1988.

    CAS  PubMed  Google Scholar 

  42. Millhauser, G.L.; Salpeter, E.E.; Oswald, R.E. Rate-amplitude correlation from single-channel records. Biophys. J. 54:1165–1168; 1988.

    CAS  PubMed  Google Scholar 

  43. Millhauser, G.L.; Salpeter, E.E.; Oswald, R.E. Diffusion models of ion channel gating: effects of dimensionality and drift. Biophys. J. 55:554a; 1989.

    Google Scholar 

  44. Neher, E.; Sakmann, B., editors. Single-channel recording. New York: Plenum; 1983.

    Google Scholar 

  45. Pietronero, L.; Tosatti, E., eds. Fractals in physics, New York: North Holland; 1986.

    Google Scholar 

  46. Rae, J.L.; Dewey, J.; Cooper, K. Control of ionic channels in rabbit and corneal endothelium. Biophys. J. 55:496a; 1989.

    Google Scholar 

  47. Rubinson, K.A. Closed channel-open channel equilibrium of the sodium channel of nerve. Biophys. Chem. 25:57–72; 1986.

    CAS  PubMed  Google Scholar 

  48. Rubinson, K.A. The effect of n-pentane on voltage-clamped squid nerve sodium currents. Biophys. Chem. 25:43–55; 1986.

    CAS  PubMed  Google Scholar 

  49. Sauvé, R.; Szabo, G. Interpretation of 1/f fluctuations in ion conducting membranes. J. Theor. Biol. 113:501–516; 1985.

    PubMed  Google Scholar 

  50. Schuster, H.G. Deterministic chaos, 2nd Ed. New York: VCH; 1988.

    Google Scholar 

  51. Thompson, J.M.T.; Stewart, H.B. Nonlinear dynamics and chaos. New York: John Wiley and Sons; 1988.

    Google Scholar 

  52. Tóth, T.I.; Liebovitch, L.S. A deterministic model of ion channels with chaotic behavior having a Markovian-like probability function. Soc. Neurosci. Abstr. 15:1142; 1989.

    Google Scholar 

  53. Weissman, M.B. 17 f noise and other slow nonexponential kinetics in condensed matter. Reviews of Modern Physics 60:537–571; 1988.

    Article  CAS  Google Scholar 

  54. Welch, G.R., Ed. The fluctuating enzyme, New York: John Wiley and Sons; 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liebovitch, L.S., Tóth, T.I. Using fractals to understand the opening and closing of ion channels. Ann Biomed Eng 18, 177–194 (1990). https://doi.org/10.1007/BF02368428

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368428

Keywords

Navigation