Skip to main content
Log in

Effect of nitric oxide synthase inhibitor on age-related changes in second messenger systems and calcium channels in rats

  • Original Contributions
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

We investigated the effects of age and nitric oxide synthase inhibitor, NG-nitro-L-arginine methyl ester (L-NAME), on protein kinase C (PKC), adenylyl cyclase, calcium/calmodulin-independent cyclic-AMP phosphodiesterase (cyclic-AMP PDE) and voltage-dependent L-type calcium channels in Fischer rat brain using autoradiography. [3H]Phorbol 12,13-dibutyrate (PDBu), [3H]forskolin, [3H]rolipram and [3H]PN200-110 were used to label PKC, adenylyl cyclase, cyclic-AMP PDE and calcium channels, respectively. [3H]Forskolin binding significantly decreased in the striatum, hippocampal CA3 sector, dentate gyrus, hilus, thalamus, substantia nigra and cerebellum of 24-month-old (aged) rats, as compared with 6-month-old (adult) animals. [3H]Rolipram binding also showed an age-related reduction in the thalamus and cerebellum in rats. In contrast, no age-related changes were observed in [3H]PDBu and [3H]PN200-110 binding in the rat brain. Chronic treatment with L-NAME (5 mg/kg, once a day for 4 weeks) showed no significant changes in [3H]PDBu. [3H]rolipram and [3H]PN200-110 binding in aged rat brains. However, this treatment significantly increased age-related decreases in [3H]forskolin binding in the frontal cortex, striatum and hippocampal CA1 sector in rats. The results demonstrate that [3H]forskolin biding in the rat brain is more susceptible to aging processes than [3H]PDBu, [3H]rolipram and [3H]PN200-110 binding. Furthermore, our study shows that chronic treatment with NO inhibitor increases the age associated changes in [3H]forskolin binding in most brain areas of aged rats. These findings suggest that NO may play a key role in the regulation of adenylyl cyclase system during aging processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Araki, T., Kato, H. and Kogure, K. (1991). Postischemic alteration of muscarinic acetylcholine, adenosine A1 and calcium antagonist binding sites in selectively vulnerable areas: an autoradiographic study of gerbil brain.J. Neurol. Sci. 106:206–212.

    Article  PubMed  CAS  Google Scholar 

  • Araki, T., Kato, H. and Kogure, K. (1992). Mapping of second messenger and rolipram receptors in mammalian brain.Brain Res. Bull. 28:843–848.

    Article  PubMed  CAS  Google Scholar 

  • Araki, T., Kato, H., Kanai, Y. and Kogure, K. (1994). Age-dependent changes in second messenger and rolipram receptor systems in the gerbil brain.J. Neural Transm. 97:135–147.

    Article  CAS  Google Scholar 

  • Araki, T., Kato, H., Fujiwara, T. and Itoyama, Y. (1995). Age-related changes in bindings of second messengers in the rat brain.Brain Res. 704:227–232.

    Article  PubMed  CAS  Google Scholar 

  • Boulton, C.L., Irving, A.J., Southam, E., Potier, B., Garthwaite, J. and Collingridge, G.L. (1994). The nitric oxide-cyclic GMP pathway and synaptic depression in rat hippocampal slices.Eur. J. Neurosci. 6:1528–1535.

    Article  PubMed  CAS  Google Scholar 

  • Bredt, D.S., Ferris, C.D. and Snyder, S.H. (1992). Nitric oxide synthase regulatory sites.J. Biol. Chem. 267:10976–10981.

    PubMed  CAS  Google Scholar 

  • Bredt, D.S. and Snyder, S.H. (1994). Nitric oxide: a physiologic messenger molecule.Ann. Rev. Biochem. 63:175–195.

    Article  PubMed  CAS  Google Scholar 

  • Daniel, H., Hermart, N., Jailard, D. and Crepel, F. (1993). Long-term depression requires nitric oxide and guanosine 3′∶5′ cyclic monophosphate production in rat cerebellum.Eur. J. Neuosci. 5:1079–1082.

    Article  CAS  Google Scholar 

  • Dawson, T.M. and Snyder, S.H. (1994). Gases as biological messengers: nitric oxide and carbon monoxide in the brain.J. Neurosci. 14:5147–5159.

    PubMed  CAS  Google Scholar 

  • Durieu-Trautmann, O., Federici, C., Creminon, C., Foignant-Chaverot, N., Roux, F., Claire, M., Strosberg, A.D. and Couraud, P.O. (1993). Nitric oxide and endothelin secretion by brain microvessel endothelial cells: regulation by cyclic nucleotides.J. Cell. Physiol. 155:104–111.

    Article  PubMed  CAS  Google Scholar 

  • Hernández, F., Alexander, S.P.H. and Kendall, D.A. (1994). Forskolin and 3-isobutyl-methylxanthine increases basal and sodium nitroprusside-elevated cyclic GMP levels in adult guinea-pig cerebellar slices.J. Neurochem. 62:2212–2218.

    Article  PubMed  Google Scholar 

  • Iadecola, C., Pelligrino, D.A., Moskowitz, M.A. and Lassen, N.A. (1994). State of the art review: nitric oxide synthase inhibition and cerebrovascular regulation.J. Cereb. Blood Flow Metab. 14:175–192.

    PubMed  CAS  Google Scholar 

  • Ignarro, L.J. (1990). Biosynthesis and metabolism of endothelium-derived nitric oxide.Ann. Rev. Pharmacol. Toxicol. 30:535–560.

    Article  CAS  Google Scholar 

  • Kaulen, P., Bruning, G., Schneider, H.H., Sarter, M. and Baumgarten, H.G. (1989). Autoradiographic mapping of a selective cyclic adenosine monophosphate phosphodiesterase in rat brain with antidepressant [3H]rolipram.Brain Res. 503:229–245.

    Article  PubMed  CAS  Google Scholar 

  • Kidd, E.J., Michel, A.D. and Humphrey, P.P.A. (1995). Autoradiographic distribution of [3H]L-NG-nitroarginine binding in rat brain.Neuropharmacology 34:63–73.

    Article  PubMed  CAS  Google Scholar 

  • Kuluz, J.W., Prado, R.J., Dietrich, W.D., Schleien, C.L. and Watson, B.D. (1993). The effect of nitric oxide synthase inhibition on infarct volume after reversible focal cerebral ischemia in conscious rats.Stroke 24:2023–2029.

    PubMed  CAS  Google Scholar 

  • Lonart, G., Wang, J. and Johanson, K.M. (1992). Nitric oxide induces neurotransmitter release from hippocampal slices.Eur. J. Pharmacol. 220:271–272.

    Article  PubMed  CAS  Google Scholar 

  • Lonart, G. and Johanson, K.M. (1994). Inhibitory effects of nitric oxide on the uptake of [3H]dopamine and [3H]glutamate by striatal synaptosomes.J. Neurochem. 63:2108–2117.

    Article  PubMed  CAS  Google Scholar 

  • Marletta, M.A. (1994). Nitric oxide synthase: aspects concerning structure and catalysis.Cell 78:927–930.

    Article  PubMed  CAS  Google Scholar 

  • Meffert, M.K., Premack, B.A. and Schulman, H. (1994). Nitric oxide stimulates Ca2+-independent synaptic vesicle release.Neuron 12:1235–1244.

    Article  PubMed  CAS  Google Scholar 

  • Moncada, S., Palmer, R.M. and Higgs, E.A. (1991). Nitric oxide: physiology, pathology and pharmacology.Pharmacol. Rev. 43:109–142.

    PubMed  CAS  Google Scholar 

  • Nathan, C. (1992). Nitric oxide as a secretory product of mammalian cells.FASEB J. 6:3051–3064.

    PubMed  CAS  Google Scholar 

  • Nathan, C. and Xie, Q.W. (1994). Nitric oxide synthases: roles, tolls, and control.Cell 78:915–918.

    Article  PubMed  CAS  Google Scholar 

  • Pelligrino, D.A. (1993). Editorial: saying NO to cerebral ischemia.J. Neurosurg. Anesthesiol. 5:221–231.

    PubMed  CAS  Google Scholar 

  • Prast, H. and Philippu, A. (1992). Nitric oxide releases acetylcholine in the basal forebrain.Eur. J. Pharmacol. 216:139–140.

    Article  PubMed  CAS  Google Scholar 

  • Reiser, G. (1992). Nitric oxide formation caused by Ca2+ release from internal stores in neuroral cell line is enhanced by cyclic AMP.Eur. J. Pharmacol. 227:89–93

    Article  PubMed  CAS  Google Scholar 

  • Scott-Burden, T, Elizondo, E., Ge, T., Boulanger, C.M., and Vanhoutte, P.M. (1992). Simultaneous activation of adenylyl cyclase and protein kinase C induces production of nitric oxide by vascular smooth muscle cells.Mol. Pharmacol. 46:274–282.

    Google Scholar 

  • Shibuki, K. and Okada, D. (1991). Endogenous nitric oxide release required for long-term synaptic depression in the cerebellum.Nature 349:326–328.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, X.-Z. and Luo, L.-G. (1992). Effect of nitroprusside (nitric oxide) on endogenous dopamine release from rat striatal slices.J. Neurochem. 59:932–935

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Araki, T., Kato, H., Shuto, K. et al. Effect of nitric oxide synthase inhibitor on age-related changes in second messenger systems and calcium channels in rats. Metab Brain Dis 12, 83–92 (1997). https://doi.org/10.1007/BF02676356

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02676356

Key words

Navigation