Skip to main content
Log in

The use of salicylate hydroxylation to detect hydroxyl radical generation in ischemic and traumatic brain injury

Reversal by Tirilazad Mesylate (U-74006F)

  • Original Articles
  • Published:
Molecular and Chemical Neuropathology

Abstract

Oxygen free radicals have been implicated as a causal factor in posttraumatic neuronal cell loss following cerebral ischemia and head injury. The conversion of salicylate to dihydroxybenzoic acid (DHBA) in vivo was employed to study the formation of hydroxyl radical (·OH) following central nervous system (CNS) injury. Bilateral carotid occlusion (BCO) in gerbils and concussive head trauma in mice were selected as models of brain injury. The lipid peroxidation inhibitor, tirilazad mesylate (U-74006F), was tested for its ability to attenuate hydroxyl radical formation in these models. In addition, U-74006F was studied as a scavenger of hydroxyl radical in an in vitro assay based on the Fenton reaction.

For in vivo experimentation, hydroxyl radical formation was expressed as the ratio of DHBA to salicylate (DHBA/SAL) measured in brain. In the BCO model, hydroxyl radical formation increased in whole brain with 10 min of occlusion followed by 1 min of reperfusion. DHBA/SAL was also found to increase in the mouse head injury model at 1 h postinjury. In both models, U-74006F (1 or 10 mg/kg) blocked the increase in DHBA/SAL following injury. In vitro, reaction of U-74006F with hydroxyl radical gave a product with a mol wt that was 16 greater than U-74006F, indicative of hydroxyl radical scavenging. We speculate that U-74006F may function by blocking oxyradical-dependent cell damage, and thereby maintaining free iron (which catalyzes hydroxyl radical formation) concentrations at normal levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Beck T. and Bielenberg G. H. (1990) Failure of the lipid peroxidation inhibitor U-74006F to improve neurological outcome after transient forebrain ischemia in the rat.Brain Res. 532, 336–338.

    Article  PubMed  CAS  Google Scholar 

  • Beck T. and Bielenberg G. W. (1991) The effects of two 21-aminosteroids on overt infarct size 48 hours after middle cerebral artery occlusion in the rat.Brain Res. 560, 159–162.

    Article  PubMed  CAS  Google Scholar 

  • Braughler J. M. and Pregenzer J. F. (1989) The 21-aminosteroid inhibitors of lipid peroxidation: reactions with lipid peroxyl and phenoxyl radicals.J. Free Rad. Biol. Med. 7, 125–130.

    Article  CAS  Google Scholar 

  • Braughler J. M., Duncan L. A., and Chase R. L. (1986) The involvement of iron in lipid peroxidation.J. Biol. Chem. 261, 10,282–10,289.

    CAS  Google Scholar 

  • Cao W., Carney J. M., Duchon A., Floyd R. A., and Chevion A. (1988) Oxygen free radical involvement in ischemia and reperfusion injury to brain.Neurosci. Lett. 88, 233–238.

    Article  PubMed  CAS  Google Scholar 

  • Chiueh C. C., Huang S. J., and Murphy D. L. (1992) Enhanced hydroxyl radical generation by 2′-methyl analog of MPTP: suppression by clorgyline and deprenyl.Synapse 1116, 183–191.

    Google Scholar 

  • Floyd R. A. and Carney J. M. (1991) Age influence on oxidative events during brain ischemia/reperfusion.Arch. Gerontol. Geriatr. 12, 155–177.

    Article  PubMed  CAS  Google Scholar 

  • Floyd R. A., Henderson R., Watson J. J., and Wong P. K. (1986) Use of salicylate with high pressure liquid chromatography and electrochemical detection (LCED) as a sensitive measure of hydroxyl free radicals in adriamycin treated rats.J. Free Rad. Biol. Med. 2, 13–18.

    Article  CAS  Google Scholar 

  • Fujii T., Hiramoto Y., Terao J., and Fukuzawa K. (1991) Site-specific mechanism of initiation by a-tocopherol of lipid peroxide-dependent lipid peroxidation in charged micelles.Arch. Biochem. Biophys. 284, 120–126.

    Article  PubMed  CAS  Google Scholar 

  • Gelvan D. and Saltman P. (1991) Small chelators and the nature of the metal ion in site-specificity of ·OH damage, inOxidative Damage & Repair: Chemical, Biological and Medical Aspects (Davies K. J. A., ed.), pp. 825–830, Pergamon, New York.

    Google Scholar 

  • Giovanni A., Hastings T. G., Liang L. P., and Zigmond M. J. (1992) Methamphetamine increases hydroxyl radicals in rat striatum: role of dopamine.Soc. Neurosc. Abstr. 18, 1444.

    Google Scholar 

  • Grootveld M. and Halliwell B. (1986) Aromatic hydroxylation as a potential measure of hydroxyl-radical formationin vivo.Biochem. J. 237, 499–504.

    PubMed  CAS  Google Scholar 

  • Hall E. D. (1985) High-dose glucocorticoid treatment improves neurological recovery in head-injured mice.J. Neurosurg. 62, 882–887.

    PubMed  CAS  Google Scholar 

  • Hall E. D. and Pazara K. E. (1989) Effects of novel 21-aminosteroid antioxidants on post-ischemic neuronal degeneration, inCerebrovascular Diseases (Ginsberg M. D. and Dietrich W. D., eds.), pp. 387–391, Raven, New York.

    Google Scholar 

  • Hall E. D., Yonkers P. A., McCall J. M., and Braughler J. M. (1988) Effects of the 21-aminosteroid U-74006F on experimental head injury in mice.J. Neurosurg. 68, 456–461.

    Article  PubMed  CAS  Google Scholar 

  • Hall E. D., Braughler J. M., and McCall J. M. (1990) Role of oxygen radicals in stroke: effect of the 21-aminosteroids (lazaroids), a novel class of antioxidants, inCurrent and Future Trends in Anticonvulsant, Anxiety, and Stroke Therapy (Meldrum B. S. and Williams M., eds.), pp. 351–362, Wiley-Liss, New York.

    Google Scholar 

  • Hall E. D., Andrus P. K., Althaus J. S., and VonVoigtlander P. F. (1993a) Hydroxyl radical production and lipid peroxidation parallels selective post-ischemic vulnerability in gerbil brain.J. Neurosc. Res. 34, 107–112.

    Article  CAS  Google Scholar 

  • Hall E. D., Andrus P. K., and Yonkers P. A. (1993b) Brain hydroxyl radical generation in acute experimental head injury.J. Neurochem. 60, 588–594.

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B. (1992) Reactive oxygen species and the central nervous system.J. Neurochem. 59, 1609–1623.

    Article  PubMed  CAS  Google Scholar 

  • Haraldseth O., GrØnas T., and Unsgard G. (1991) Quicker metabolic recovery after forebrain ischemia in rats treated with the antioxidant U-74006F.Stroke 22, 1188–1192.

    PubMed  CAS  Google Scholar 

  • Haseloff R. F., Blasig I. E., Meffert H., and Ebert B. (1990) Hydroxyl radical scavenging and antipsoriatic activity of benzoic acid derivatives.Free Rad. Biol. Med. 9, 111–115.

    Article  PubMed  CAS  Google Scholar 

  • Ingold K. U., Bowry V. W., Stocker R., and Walling C. (1993) Autoxidation of lipids and antioxidation by α-tocopherol and ubiquinol in homogeneous solution and in aqueous dispersions of lipids: Unrecognized consequences of lipid particle size as exemplified by oxidation of human low density lipoprotein.Proc. Natl. Acad. Sci. USA 90, 45–49.

    Article  PubMed  CAS  Google Scholar 

  • Janero D. R. and Burghardt B. (1989) Prevention of oxidative injury to cardiac phospholipid by membrane-active “stabilizing agents.” Res.Comm. Chem. Pathol. Pharmacol. 63, 163–173.

    CAS  Google Scholar 

  • Kobayashi A., Watanabe H., Ozawa K., Hayashi H., and Yamazaki N. (1989) Oxygen-derived free radicals related injury in the heart during ischemia and reperfusion.Jpn. Circ. J. 53, 1122–1131.

    PubMed  CAS  Google Scholar 

  • Kontos H.A. and Povlishock J. T. (1986) Oxygen radicals in brain injury.CNS Trauma 3, 257–263.

    CAS  Google Scholar 

  • Lesiuk H., Sutherland G., Peeling J., Butler K., and Saunders J. (1991) Effect of U-74006F on forebrain ischemia in rats.Stroke 22, 896–901.

    PubMed  CAS  Google Scholar 

  • McIntosh T. K., Thomas M., Smith D., and Banbury M. (1992) The novel 21-aminosteroid U-74006F attenuates cerebral edema and improves survival after brain injury in the rat.J. Neurotrauma 9, 33–46.

    Article  PubMed  CAS  Google Scholar 

  • Moorhouse C. P., Halliwell B., Grootveld M., and Gutteridge J. M. C. (1985) Cobalt (II) ion as a promoter of hydroxyl radical and possible ‘cryptohydroxyl’ radical formation under physiological conditions. Differential effects of hydroxyl radical scavengers.Biochim. Biophys. Acta. 843, 261–268.

    PubMed  CAS  Google Scholar 

  • Pahlmark K., Smith M. L., and Siesjö B. K. (1991) Failure of U-74006F to ameliorate neuronal damage due to transient ischemia or hypoglycemia.J. Cerebr. Blood Flow Metab. 2, S138.

    Google Scholar 

  • Perkins W.J., Lessor N., Downes H., and Riker W. K. (1992) Effect of a 21-aminosteroid on histopathologic outcome after forebrain ischemia in the rat.FASEB J. 5, A1279.

    Google Scholar 

  • Piantadosi C. A. and Tatro L. G. (1990) Regional H2O2 concentration in rat brain after hyperoxic convulsions.J. Appl. Physiol. 69, 1761–1766.

    PubMed  CAS  Google Scholar 

  • Powell S. R. and Hall R. (1990) Use of salicylate as a probe for ·OH formation in isolated ischemic rat hearts.Free Rad. Biol. Med. 9, 133–141.

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto A., Ohnishi S. T., Ohnishi T., and Ogawa R. (1991) Relationship between free radical production and lipid peroxidation during ischemiareperfusion injury in rat brain.Brain Res. 554, 186–192.

    Article  PubMed  CAS  Google Scholar 

  • Simpson J. A., Cheeseman K. H., Smith S. E., and Dean R. T. (1988) Free-radical generation by copper ions and hydrogen peroxide.Biochem. J. 254, 519–523.

    PubMed  CAS  Google Scholar 

  • Snedecor G. W. and Cochran W. G. (1967)Statistical Methods, 6th ed., The Iowa State University Press, Ames, LA.

    Google Scholar 

  • Spina M. B. and Cohen G. (1989) Dopamine turnover and glutathione oxidation: Implications for parkinson disease.Proc. Natl. Acad. Sci. USA 86, 1398–1400.

    Article  PubMed  CAS  Google Scholar 

  • Sutton H. C. (1985) Efficiency of chelated iron compounds as catalysts for the Haber-Weiss reaction.J. Free Rad. Biol. Med. 1, 195–202.

    Article  CAS  Google Scholar 

  • Tosaki A., Blasig I. E., Pali T., and Ebert B. (1990) Heart protection and radical trapping by DMPO during reperfusion in isolated working rat hearts.Free Rad. Biol. Med. 8, 363–372.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida K., Terao J., Suzuki T., and Takama K. (1991) Inhibitory effect of phosphatidylserine on iron-dependent lipid peroxidation.Biochem. Biophys. Res. Comm. 179, 1077–1081.

    Article  PubMed  CAS  Google Scholar 

  • Young W., Wojak J. C., and DeCrescito V. (1988) 21-aminosteroid reduces ion shifts and edema in the rat middle cerebral artery occlusion model of regional ischemia.Stroke 19, 1013–1019.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Althaus, J.S., Andrus, P.K., Williams, C.M. et al. The use of salicylate hydroxylation to detect hydroxyl radical generation in ischemic and traumatic brain injury. Molecular and Chemical Neuropathology 20, 147–162 (1993). https://doi.org/10.1007/BF02815368

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02815368

Index Entries

Navigation