Skip to main content

Angiotensin stimulation of the central nervous system

  • Chapter
  • First Online:

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 87))

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdelaal AE, Assaf SY, Kucharczyk J, Mogenson GJ (1974a) Effects of ablation of subfornical organ on water intake elicited by systemically administered angiotensin II. Can J Physiol Pharmacol 52:1217–1220

    PubMed  Google Scholar 

  • Abdelaal AE, Mercer PF, Mogenson GJ (1974b) Drinking elicited by polyethylene glycol and isoproterenol reduced by antiserum to angiotensin II. Can J Physiol Pharmacol 52:362–363

    PubMed  Google Scholar 

  • Abraham SF Baker RM, Blaine EH, Denton DA, McKinley MJ (1975) Water drinking induced in sheep by angiotensin — a physiological or pharmacological effect? J Comp Physiol Psychol 88:503–518

    PubMed  Google Scholar 

  • Abraham SF, Denton DA, McKinley MJ, Weisinger RS (1976) Effect of an angiotensin antagonist, Sar1-Ala8-Angiotensin II on physiological thirst. Pharmacol Biochem Behav 4:243–247

    Article  PubMed  Google Scholar 

  • American Physiological Society Symposium (1978) Angiotensin-induced thirst: peripheral and central mechanisms. Fed Proc 37:2667–2716

    Google Scholar 

  • Andersson B (1978) Regulation of water intake. Physiol Rev 58:582–603

    PubMed  Google Scholar 

  • Andersson B, Eriksson L (1971) Conjoint action of sodium and angiotensin on brain mechanisms controlling water and salt balances. Acta Physiol Scand 81:18–29

    PubMed  Google Scholar 

  • Andersson B, Leksell LG (1975) Effects on fluid balance of intraventricular infusions of prostaglandin E1. Acta Physiol Scand 93:286–288

    PubMed  Google Scholar 

  • Andersson B, Westby O (1970) Synergistic action of sodium and angiotensin on brain mechanisms controlling fluid balance. Life Sci 9:601–608

    Article  Google Scholar 

  • Andersson B, Jobin M, Olsson K (1967) A study of thirst and other effects of an increased sodium concentration in the 3rd brain ventricle. Acta Physiol Scand 69:29–36

    PubMed  Google Scholar 

  • Andersson B, Dallman MF, Olsson K (1969) Evidence for a hypothalamic control of renal sodium excretion. Acta Physiol Scand 75:496–510

    PubMed  Google Scholar 

  • Andersson B, Eriksson L, Fernandez O, Kolmodin CG, Oltner R (1972) Centrally mediated effects of sodium and angiotensin II on arterial blood pressure and fluid balance. Acta Physiol Scand 85:398–407

    PubMed  Google Scholar 

  • Andersson B, Leksell LG, Lishajko F (1975) Perturbations in fluid balance induced by medially placed forebrain lesions. Brain Res 99:261–275

    Article  PubMed  Google Scholar 

  • Andersson B, Leksell LG, Lishajko F, Rundgren M (1978) Cerebral sodium-noradrenaline interaction: dipsogenic, antidiuretic and natriuretic effects. Acta Physiol Scand 102:254–256

    PubMed  Google Scholar 

  • Arregui A, Iversen L (1978) Angiotensin-converting enzyme: presence of high activity in choroid plexus of mammalian brain. Eur J Pharmacol 52:147–150

    Article  PubMed  Google Scholar 

  • Avrith DB, Fitzsimons JT (1978) Intracranial angiotensin II stimulates sodium appetite. J Physiol (Lond) 282:40–41P

    Google Scholar 

  • Avrith DB, Fitzsimons JT (1980) Increased sodium appetite in the rat induced by intracranial adminstration of components of the renin-angiotensin system. J Physiol (Lond) 301:349–364

    PubMed  Google Scholar 

  • Bennett JP, Snyder SH (1976) Angiotensin II binding to mammalian brain membranes. J Biol Chem 251:7423–7430

    PubMed  Google Scholar 

  • Berl T, Schrier RW (1973) Mechanism of effect of prostaglandin E1 on renal water excretion. J Clin Invest 52:463–471

    PubMed  Google Scholar 

  • Bickerton RK, Buckley JP (1961) Evidence for a central mechanism in angiotensin-induced hypertension. Proc Soc Exp Biol Med 106:834–836

    Google Scholar 

  • Blair-West JR, Coghlan JP, Denton DA, Funder JW, Scoggins BA, Wright RD (1971) Effect of the heptapeptide (2–8) and the hexapeptide (3–8) fragments of angiotensin II on aldosterone secretion. J Clin Endocrinol Metab 40:530–533

    Google Scholar 

  • Blass EM, Chapman HW (1971) An evaluation of the contribution of cholinergic mechanisms to thirst. Physiol Behav 7:679–686

    Article  PubMed  Google Scholar 

  • Bonjour JP, Malvin RL (1970) Stimulation of ADH release by the renin-angiotensin system. Am J Physiol 218:1555–1559

    PubMed  Google Scholar 

  • Booth DA (1968) Mechanisms of action of norepinephrine in eliciting an eating response on injection into the rat hypothalamus. J Pharmacol Exp Ther 160:336–348

    PubMed  Google Scholar 

  • Braun-Menéndez E, Fasciolo JC, Leloir LF, Muñoz JM (1940) The substance causing renal hypertension. J Physiol (Lond) 98:283–298

    Google Scholar 

  • Brophy PD, Levitt RA (1974) Dose-response analysis of angiotensin-and renin-induced drinking in the cat. Pharmacol Biochem Behav 2:509–514

    Article  PubMed  Google Scholar 

  • Brown JJ, Curtis JR, Lever AF, Robertson JIS, DeWardener HE, Wing AJ (1969) Plasma renin concentration and the control of blood pressure in patients on maintenance haemodialysis. Nephron 6:329–349

    PubMed  Google Scholar 

  • Brown-Séquard CE (1893) Importance de la sécrétion interne des reins démontrée par les phénomènes de l'anurie et de l'urémie. Arch Physiol Norm Pathol 5:778–786

    Google Scholar 

  • Bryant RW, Falk JL (1973) Angiotensin I as a dipsogen: efficacy in brain independent of conversion to angiotensin II. Pharmacol Biochem Behav 1:469–475

    Article  PubMed  Google Scholar 

  • Bryant RW, Fluharty SJ, Epstein AN (1978) Excessive drinking of sodium solutions by rats receiving continuous intracranial infusion of angiotensin. Fed Proc 37:323

    Google Scholar 

  • Bryant RW, Epstein AN, Fitzsimons JT, Fluharty SJ (1980) Arousal of a specific and persistent sodium appetite in the rat with continuous intracerebroventricular infusion of angiotensin II. J Physiol (Lond) 301:365–382

    PubMed  Google Scholar 

  • Buckley JP (1972) Actions of angiotensin on the central nervous system. Fed Proc 31:1332–1337

    PubMed  Google Scholar 

  • Buckley JP, Halliday RP, Bickerton RK (1977) Initial studies on the central nervous system effects of angiotensin II. In: Buckley JP Ferrario CM (eds) Central actions of angiotensin and related hormones. Pergamon Press, New York Oxford Toronto Sydney Paris Frankfurt, pp 1–6

    Google Scholar 

  • Buggy J, Fisher AE (1974) Evidence for a dual central role for angiotensin in water and sodium intake. Nature 250:733–735

    Article  PubMed  Google Scholar 

  • Buggy J, Fink GD, Johnson AK, Brody MJ (1977) Prevention of the development of renal hypertension by anteroventral third ventricular tissue lesions. Circ Res (Suppl 1) 40:10–117

    Google Scholar 

  • Burckhardt R, Peters-Haefeli L, Peters G (1975) The mechanism of thirst-induction by intrahypothalamic renin. In: Peters G, Fitzsimons JT, Peters-Haefeli L (eds) Control mechanisms of drinking. Springer, Berlin Heidelberg New York, pp 103–107

    Google Scholar 

  • Chiaraviglio E (1972) Mesencephalic influence on the intake of sodium chloride and water in the rat. Brain Res 44:73–82

    Article  PubMed  Google Scholar 

  • Chiaraviglio E (1976) Effect of renin-angiotensin system on sodium intake. J Physiol (Lond) 255:57–66

    PubMed  Google Scholar 

  • Chiaraviglio E, Taleisnik S (1969) Water and salt intake induced by hypothalamic implants of cholinergic and adrenergic agents. Am J Physiol 216:1418–1422

    PubMed  Google Scholar 

  • Claybaugh JR, Share L, Shimizu K (1972) The inability of infusions of angiotensin to elevate the plasma vasopressin concentration in the anesthetized dog. Endocrinology 90:1647–1652

    PubMed  Google Scholar 

  • Cooling MJ, Day MD (1975) Angiotensin-induced drinking in the cat. In: Peters G, Fitzsimons JT, Peters-Haefeli L (eds) Control mechanisms of drinking. Springer, Berlin Heidelberg New York, pp 132–135

    Google Scholar 

  • Corrêa FMA, Graeff FG (1974) Central mechanism of the hypertensive action of intraventricular bradykinin in the unanesthetized rat. Neuropharmacology 13:65–75

    Article  PubMed  Google Scholar 

  • Corrêa FMA, Graeff FG (1975) Central site of the hypertensive action of bradykinin. J Pharmacol Exp Ther 192:670–676

    PubMed  Google Scholar 

  • Covian MR, Gentil CG, Antunes-Rodrigues J (1972) Water and sodium chloride intake following microinjections of angiotensin II into the septal area of the rat brain. Physiol Behav 9:373–377

    Article  PubMed  Google Scholar 

  • Daniels-Severs A, Ogden E, Vernikos-Danellis J (1971) Centrally mediated effects of angiotensin II in the unanesthetized rat. Physiol Behav 7:785–787

    Article  PubMed  Google Scholar 

  • Davis JO, Freeman RH (1976) Mechanisms regulating renin release. Physiol Rev 56:1–56

    PubMed  Google Scholar 

  • Day RP, Reid IA (1976) Renin activity in dog brain: enzymological similarity to cathepsin D. Endocrinology 99:93–100

    PubMed  Google Scholar 

  • Denton DA, Kraintz FW, Kraintz L (1969) The inhibition of salt appetite of sodium-deficient sheep by intracarotid infusion of ouabain. Commun Behav Biol (A) 4:183–194

    Google Scholar 

  • Deuben RR, Buckley JP (1970) Identification of a central site of action of angiotensin II. J Pharmacol Exp Ther 175:139–146

    PubMed  Google Scholar 

  • Dickinson CJ (1965) Neurogenic hypertension. Blackwell Scientific Publications, Oxford, pp 158–161

    Google Scholar 

  • Dickinson CJ (1977) Systems analysis of CNS/angiotensin interaction. In: Buckley JP, Ferrario CM (eds) Central actions of angiotensin and related hormones. Pergamon, New York Oxford Toronto Sydney Paris Frankfurt, pp 175–182

    Google Scholar 

  • Dickinson CJ, Lawrence JR (1963) A slowly developing pressor response to small concentrations of angiotensin — Its bearing on the pathogenesis of chronic renal hypertension. Lancet I:1354–1356

    Article  Google Scholar 

  • Dickinson CJ, Yu R (1967) Mechanisms involved in the progressive pressor response to very small amounts of angiotensin in conscious rabbits. Circ Res (Suppl 2) 21:157–163

    PubMed  Google Scholar 

  • Elghozi JL, Altman J, Devynck MA, Liard JF, Grünfeld JP, Meyer P (1976) Lack of hypotensive effect on central injection of angiotensin inhibitors in spontaneously hypertensive and normotensive rats. Clin Sci Mol Med 51:385–389

    Google Scholar 

  • Elie R, Panisset JC (1970) Effect of angiotensin and atropine on the spontaneous release of acetylcholine from the cat cerebral cortex. Brain Res 17:297–305

    Article  PubMed  Google Scholar 

  • Elliott DF, Peart WS (1957) The amino acid sequence in a hypertension. Biochem J 65:246–254

    PubMed  Google Scholar 

  • Epstein AN (1978) The neuroendocrinology of thirst and salt appetite. In: Ganong WF, Martini L (eds) Frontiers in neuroendocrinology, vol 5. Raven, New York, pp 101–134

    Google Scholar 

  • Epstein AN, Fitzsimons JT, Rolls BJ (1970) Drinking induced by injection of angiotensin into the brain of the rat. J Physiol (Lond) 210:457–474

    PubMed  Google Scholar 

  • Epstein AN, Fitzsimons JT, Johnson AK (1973) Prevention by angiotensin II antiserum of drinking induced by intracranial angiotensin. J Physiol (Lond) 230:42–43

    Google Scholar 

  • Eriksson L, Fernández O, Olsson K (1971) Differences in the antidiuretic response to intracarotid infusions of various hypertonic solutions in the conscious goat. Acta Physiol Scand 83:554–562

    PubMed  Google Scholar 

  • Evered MD, Fitzsimons JT (1976a) Drinking induced by angiotensin in the pigeon Columba livia. J Physiol (Lond) 263:193–194P

    Google Scholar 

  • Evered MD, Fitzsimons JT (1976b) Peptide specificity of receptors for angiotensin-induced thirst in the pigeon Columba livia. J Physiol (Lond) 263:252–253P

    Google Scholar 

  • Falk JL, Lipton JM (1967) Temporal factors in the genesis of NaCl appetite by intraperitoneal dialysis. J Comp Physiol Psychol 63:247–251

    PubMed  Google Scholar 

  • Felix D (1976) Peptide and acetylcholine action on neurones of the cat subfornical organ. Arch Pharmacol 292:15–20

    Article  Google Scholar 

  • Felix D, Akert K (1974) The effect of angiotensin II on neurones of the cat subfornical organ. Brain Res 76:350–353

    Article  PubMed  Google Scholar 

  • Felix D, Schlegel W (1978) Angiotensin receptive neurones in the subfornical organ. Structure-activity relations. Brain Res 149:107–116

    Article  PubMed  Google Scholar 

  • Ferrario CM, Dickinson CJ, McCubbin JW (1970) Central vasomotor stimulation by angiotensin. Clin Sci 39:239–245

    PubMed  Google Scholar 

  • Ferrario CM, Gildenberg PL, McCubbin JW (1972) Cardiovascular effects of angiotensin mediated by the central nervous system. Circ Res 30:257–262

    PubMed  Google Scholar 

  • Finkielman S, Fischer-Ferraro C, Diaz A, Goldstein DJ, Nahmod VE (1972) A pressor substance in the cerebrospinal fluid of normotensive and hypertensive patients. Proc Natl Acad Sci USA 69:3341–3344

    PubMed  Google Scholar 

  • Fischer-Ferraro C, Nahmod VE, Golstein DJ, Finkielman S (1971) Angiotensin and renin in rat and dog brain. J Exp Med 133:353–361

    Article  PubMed  Google Scholar 

  • Fitzsimons JT (1961) Drinking by rats depleted of body fluid without increase in osmotic pressure. J Physiol (Lond) 159:297–309

    PubMed  Google Scholar 

  • Fitzsimons JT (1966) Hypovolaemic drinking and renin. J Physiol 186:130–131P

    Google Scholar 

  • Fitzsimons JT (1969) The role of a renal thirst factor in drinking induced by extracellular stimuli. J Physiol (Lond) 201:349–368

    PubMed  Google Scholar 

  • Fitzsimons JT (1970) Interactions of intracranially administered renin or angiotensin and other thirst stimuli on drinking. J Physiol (Lond) 210:152–153P

    Google Scholar 

  • Fitzsimons JT (1971) The effect on drinking of peptide precursors and of shorter chain peptide fragments of angiotensin II injected into the rat's diencephalon. J Physiol (Lond) 214:295–303

    PubMed  Google Scholar 

  • Fitzsimons JT (1975) The renin-angiotensin system and drinking behavior. Prog Brain Res 42:215–233

    PubMed  Google Scholar 

  • Fitzsimons JT (1979) The physiology of thirst and sodium appetite. Monographs of the Physiological Society No 35. Cambridge University Press, Cambridge

    Google Scholar 

  • Fitzsimons JT, Kaufman S (1977) Cellular and extracellular dehydration, and angiotensin as stimuli to drinking in the common iguana. Iguana iguana. J Physiol (Lond) 265:443–463

    PubMed  Google Scholar 

  • Fitzsimons JT, Kucharczyk J (1978) Drinking and haemodynamic changes induced in the dog by intracranial injection of components of the renin-angiotensin system. J Physiol (Lond) 276:419–434

    PubMed  Google Scholar 

  • Fitzsimons JT, Setler P (1971) Catecholaminergic mechanisms in angiotensin-induced drinking. J Physiol (Lond) 218:43–44P

    Google Scholar 

  • Fitzsimons JT, Setler P (1975) The relative importance of central nervous catecholaminergic and cholinergic mechanisms in drinking in response to angiotensin and other thirst stimuli. J Physiol (Lond) 250:613–631

    PubMed  Google Scholar 

  • Fitzsimons JT, Simons BJ (1968) The effect of angiotensin on drinking in the rat. J Physiol (Lond) 196:39–41P

    Google Scholar 

  • Fitzsimons JT, Simons BJ (1969) The effect on drinking in the rat of intravenous infusion of angiotensin, given alone or in combination with other stimuli of thirst. J Physiol (Lond) 203:45–57

    PubMed  Google Scholar 

  • Fitzsimons JT, Stricker EM (1971) Sodium appetite and the renin-angiotensin system. Nature 231:58–60

    Article  PubMed  Google Scholar 

  • Fitzsimons JT, Wirth JB (1978) The renin-angiotensin system and sodium appetite. J Physiol (Lond) 274:63–80

    PubMed  Google Scholar 

  • Fitzsimons JT, Kucharczyk J, Richards G (1978a) Systemic angiotensin-induced drinking in the dog: a physiological phenomenon. J Physiol (Lond) 276:435–448

    PubMed  Google Scholar 

  • Fitzsimons JT, Epstein AN, Johnson AK (1978b) Peptide antagonists of the reninangiotensin system in the characterisation of receptors for angiotensin-induced drinking. Brain Res 153:319–331

    Article  PubMed  Google Scholar 

  • Fuxe K, Ganten D, Hökfelt T, Bolme P (1976) Immunohistochemical evidence for the existence of angiotensin II-containing nerve terminals in the brain and spinal cord in the rat. Neurosci Lett 2:229–234

    Article  Google Scholar 

  • Gann DS, Pirkle JC (1975) Role of cortisol in the restitution of blood volume after hemorrhage. Am J Surg 130:565–569

    Article  PubMed  Google Scholar 

  • Ganten D, Speck G (1978) The brain renin-angiotensin system: A model for the synthesis of peptides in the brain. Biochem Pharmacol 27:2379–2389

    Article  PubMed  Google Scholar 

  • Ganten D, Hutchinson JS, Schelling P (1975) The intrinsic brain iso-renin-angiotensin system in the rat: its possible role in central mechanisms of blood pressure regulation. Clin Sci Mol Med 48:265–268

    Google Scholar 

  • Ganten D, Hutchinson JS, Schelling P, Ganten U, Fischer H (1976) The isorenin angiotensin systems in extrarenal tissue. Clin Exp Pharmacol Physiol 3:103–126

    PubMed  Google Scholar 

  • Giardina AR, Fisher AE (1971) Effects of atropine on drinking induced by carbachol, angiotensin and isoproternol. Physiol Behav 7:653–655

    Article  PubMed  Google Scholar 

  • Gildenberg PL, Ferrario CM (1977) A technique for determining the site of action of angiotensin and other hormones in the brain stem. In: Buckley JP and Ferrario CM (eds) Central actions of angiotensin and related hormones. Pergamon Press, New York Oxford Toronto Sydney Paris Frankfurt, pp 157–164

    Google Scholar 

  • Gildenberg PL, Ferrario CM, McCubbin JW (1973) Two sites of cardiovascular action of angiotensin II in the brain of the dog. Clin Sci 44:417–420

    PubMed  Google Scholar 

  • Goldblatt H, Lynch J, Hanzal RF, Summerville WW (1934) Studies on experimental hypertension I. Production of persistent elevation of systolic blood pressure by means of renal ischemia. J Exp Med 59:347–379

    Article  Google Scholar 

  • Grossman SP (1962) Direct adrenergic and cholinergic stimulation of hypothalamic mechanisms. Am J Physiol 202:872–882

    PubMed  Google Scholar 

  • Haack D, Möhring J (1978) Vasopressin-mediated blood pressure response to intraventricular injection of angiotensin II in the rat. Pfluegers Arch 373:167–173

    Article  Google Scholar 

  • Hendler NH, Blake WD (1969) Hypothalamic implants of angiotensin II carbachol, and norepinephrine on water and NaCl solution intake in rats. Comm Behav Biol 4a:41–48

    Google Scholar 

  • Hirano T, Takei Y, Kobayashi H (1978) Angiotensin and drinking in the eel and frog. In: Barker Jørgensen C, Skadhauge E (eds) Osmotic and volume regulation. Munksgaard, Copenhagen, pp 123–128

    Google Scholar 

  • Hirose S, Yokosawa H, Inagami T (1978) Immunochemical identification of renin in rat brain and distinction from acid proteases. Nature 274:392–393

    Article  PubMed  Google Scholar 

  • Hoffman WE, Phillips MI (1976a) A pressor response to intraventricular injections of carbachol. Brain Res 105:157–162

    Article  PubMed  Google Scholar 

  • Hoffman WE, Phillips MI (1976b) Evidence for Sar1-Ala8-Angiotensin crossing the blood cerebrospinal fluid barrier to antagonise central effects of angiotensin II. Brain Res 109:541–552

    Article  PubMed  Google Scholar 

  • Hoffman WE, Phillips MI (1976c) Regional study of cerebral ventricle sensitive sites to angiotensin II. Brain Res 110:313–330

    Article  PubMed  Google Scholar 

  • Hoffman WE, Phillips MI (1977) The role of ADH in the pressor response to intraventricular angiotensin II. In: Buckley JP, Ferrario CM (eds) Central actions of angiotensin and related hormones. Pergamon Press, New York Oxford Toronto Sydney Paris Frankfurt, pp 307–314

    Google Scholar 

  • Hoffman WE, Phillips MI, Schmid PG, Falcon J, Weet JF (1977) Antidiuretic hormone release and the pressor response to central angiotensin II and cholinergic stimulation. Neuropharmacology 16:463–472

    Article  PubMed  Google Scholar 

  • Hoffman WE, Ganten U, Phillips MI, Schmid PG, Schelling P, Ganten D (1978) Inhibition of drinking in water-deprived rats by combined central angiotensin II and cholinergic receptor blockade. A J Physiol 234:F41–F47

    Google Scholar 

  • Houpt KA, Epstein AN (1971) The complete dependence of beta-adrenergic drinking on the renal dipsogen. Physiol Behav 7:897–902

    Article  PubMed  Google Scholar 

  • Hsiao S, Epstein AN, Camardo JS (1977) The dipsogenic potency of peripheral angiotensin II. Horm Behav 8:129–140

    Article  PubMed  Google Scholar 

  • Hutchinson JS, Schelling P, Möhring J, Ganten D (1976) Pressor action of centrally perfused angiotensin II in rats with hereditary hypothalamic diabetes insipidus. Endocrinology 99:819–823

    PubMed  Google Scholar 

  • Igic RP, Robinson CJG, Erdös EG (1977) Angiotensin I converting enzyme activity in the choroid plexus and in the retina. In: Buckley JP, Ferrario CM (eds) Central actions of angiotensin and related hormones. Pergamon Press, New York Oxford Toronto Sydney Paris Frankfurt, pp 23–27

    Google Scholar 

  • Jiménez Díaz C, Linazasoro JM, Merchante A (1959) Further study of the part played by the kidneys in the regulation of thirst. Bull Inst Med Res 12:60–67

    Google Scholar 

  • Johansson B, Li CL, Olsson Y, Klatzo I (1970) The effect of acute hypertension on the blood brain barrier to protein tracers. Acta Neuropathol (Berl) 16:117–124

    Article  PubMed  Google Scholar 

  • Johnson AK, Buggy J (1978) Periventricular preoptic-hypothalamus is vital for thirst and normal water economy. Am J Physiol 234:R122–129

    PubMed  Google Scholar 

  • Joy MD, Lowe RD (1970) Evidence for a medullary site of action in the cardiovascular response to angiotensin II. J Physiol (Lond) 206:41–42

    PubMed  Google Scholar 

  • Katic F, Joy MD, Lavery H, Lowe RD, Scroop GC (1971) Role of central effects of angiotensin in response to haemorrhage in the dog. Lancet II:1354–1356

    Article  Google Scholar 

  • Keil LC, Summy-Long J, Severs WB (1975) Release of vasopressin by angiotensin II. Endocrinology 96:1063–1065

    PubMed  Google Scholar 

  • Kozlowski S, Drzewiecki K, Zurawski W (1972) Relationship between osmotic reactivity of the thirst mechanism and the angiotensin and aldosterone level in the blood of dogs. Acta Physiol Pol 23:369–376

    Google Scholar 

  • Kucharczyk J, Assaf SY, Mogenson GJ (1976) Differential effects of brain lesions on thirst induced by the administration of angiotensin II to the preoptic region, subfornical organ and anterior third ventricle. Brain Res 108:327–337

    Article  PubMed  Google Scholar 

  • Lambert GA, Lang WJ (1970) The effects of bradykinin and eledoisin injected into the cerebral ventricles of conscious rats. Eur J Pharmacol 9:383–386

    Article  PubMed  Google Scholar 

  • Lehr D, Goldman W (1973) Continued pharmacologic analysis of consummatory behavior in the albino rat. Eur J Pharmacol 23:197–210

    Article  PubMed  Google Scholar 

  • Leibowitz SF (1975a) Pattern of drinking and feeding produced by hypothalamic norepinephrine injection in the satiated rat. Physiol Behav 14:731–742

    Article  PubMed  Google Scholar 

  • Leibowitz SF (1975b) Ingestion in the satiated rat: role of alpha and beta receptors in mediating effects of hypothalamic adrenergic stimulation. Physiol Behav 14:743–754

    Article  PubMed  Google Scholar 

  • Leksell LG, Rundgren M (1977) Cerebral sodium-angiotensin interaction demonstrated with “subthreshold” amounts of angiotensin II. Acta Physiol Scand 100:494–496

    PubMed  Google Scholar 

  • Leksell LG, Lishajko F, Rundgren M (1976) Negative water balance induced by intracerebroventricular infusion of deuterium. Acta Physiol Scand 97:142–144

    PubMed  Google Scholar 

  • Linazasoro JM, Jiménez Díaz C, Castro Mendoza H (1954) The kidney and thirst regulation. Bull Inst Med Res 7:53–61

    Google Scholar 

  • Lowe RD, Scroop GC (1969) The cardiovascular response to vertebral artery infusions of angiotensin in the dog. Clin Sci 37:593–603

    PubMed  Google Scholar 

  • Malvin RL, Mouw D, Vander AJ (1977) Angiotensin: Physiological role in water deprivation-induced thirst of rats. Science 197:171–173

    PubMed  Google Scholar 

  • Mann JFE, Phillips MI, Dietz R, Haebara H, Ganten D (1978) Effects of central and peripheral angiotensin blockade in hypertensive rats. Am J Physiol 234:H629–637

    PubMed  Google Scholar 

  • Maran JW, Yates FE (1977) Cortisol secretion during intrapituitary infusion of angiotensin II in conscious dogs. Am J Physiol 233:E273–E285

    PubMed  Google Scholar 

  • McKinley MJ, Denton DA, Weisinger RS (1978) Sensors for antidiuresis and thirstosmoreceptors or CSF sodium detectors? Brain Res 141:89–103

    Article  PubMed  Google Scholar 

  • Michell AR (1974) The effect of diphenylhydantoin on sodium appetite in rats. J Physiol (Lond) 237:53–55

    Google Scholar 

  • Möhring J, Möhring B, Näumann H-J, Philippi A, Homsy E, Orth H, Dauda G, Kazda S, Gross F (1975) Salt and water balance and renin activity in renal hypertension of rats. Am J Physiol 228:1847–1855

    PubMed  Google Scholar 

  • Mogenson GJ, Kucharczyk J (1975) Evidence that the lateral hypothalamus and mid-brain participate in the drinking response elicited by intracranial angiotensin. In: Peters G, Fitzsimons JT, Peters-Haefeli L (eds) Control mechanisms of drinking. Springer, New York Heidelberg Berlin

    Google Scholar 

  • Mouw D, Bonjour J-P, Malvin RL, Vander A (1971) Central action of angiotensin in stimulating ADH release. Am J Physiol 220:239–242

    PubMed  Google Scholar 

  • Myers RD, Hall GH, Rudy TA (1973) Drinking in the monkey evoked by nicotine or angiotensin II microinjected in hypothalamic and mesencephalic sites. Pharmacol Biochem Behav 1:15–22

    Article  PubMed  Google Scholar 

  • Nicolaidis S, Fitzsimons JT (1975) La dépendance de la prise d'eau induite par l'angiotensine II envers la fonction vasomotrice cérébrale locale chez le rat. C R Acad Sci (D) (Paris) 281:1417–1420

    Google Scholar 

  • Nicoll RA, Barker JL (1971) Excitation of supraoptic neurosecretory cells by angiotensin II. Nature N Biol 233:172–174

    Google Scholar 

  • Olsson K, Kolmodin R (1974) Accentuation by angiotensin II of the antidiuretic and dipsogenic responses to intracarotid infusions of NaCl and fructose. Acta Endocrinol (Kbh) 75:333–341

    PubMed  Google Scholar 

  • Olsson K, Larsson B, Liljekvist E (1976) Intracerebroventricular glycerol: a potent inhibitor of ADH-release and thirst. Acta Physiol Scand 98:470–477

    PubMed  Google Scholar 

  • Page IH, Helmer OM (1940) A crystalline pressor substance (angiotonin) resulting from the reaction between renin and reninactivator. J Exp Med 71:29–42

    Article  Google Scholar 

  • Palaic D, Khairallah PA (1968) Inhibition of norepinephrine reuptake by angiotensin in brain. J Neurochem 15:1195–1202

    PubMed  Google Scholar 

  • Peach MJ (1977) Renin-angiotensin system: biochemistry and mechanisms of action. Physiol Rev 57:313–370

    PubMed  Google Scholar 

  • Peart WS (1976) The renin-angiotensin system. In: Parsons JA (ed) Peptide hormones. Macmillan, London, pp 179–196

    Google Scholar 

  • Peres VL, Gentil CG, Graeff FG, Covian MR (1974) Antagonism of the dipsogenic action of intraseptal angiotensin II in the rat. Pharmacol Biochem Behav 2:597–602

    Article  PubMed  Google Scholar 

  • Phillips MI (1978) Angiotensin in the brain. Neuroendocrinology 25:354–377

    PubMed  Google Scholar 

  • Phillips MI, Felix D (1976) Specific angiotensin II receptive neurons in the cat subfornical organ. Brain Res 109:531–540

    Article  PubMed  Google Scholar 

  • Phillips MI, Hoffman WE (1977) Sensitive sites in the brain for blood pressure and drinking responses to angiotensin II. In: Buckley JP and Ferrario CM (eds) Central actions of angiotensin and related hormones. Pergamon Press, New York, pp 325–356

    Google Scholar 

  • Pickford M (1947) The action of acetylcholine in the supraoptic nucleus of the chloralosed dog. J Physiol (Lond) 106:264–270

    Google Scholar 

  • Ramsay DJ, Reid IA (1975) Some central mechanisms of thirst in the dog. J Physiol (Lond) 253:517–525

    PubMed  Google Scholar 

  • Ramsay DJ, Keil LC, Sharpe MC, Shinsako J (1978) Angiotensin II infusion increases vasopressin, ACTH, and 11-hydroxycorticosteroid secretion. Am J Physiol 234:R66–R71

    PubMed  Google Scholar 

  • Regoli D, Park WK, Rioux F (1974) Pharmacology of angiotensin. Pharmacol Rev 26:69–123

    PubMed  Google Scholar 

  • Reid IA (1977) Is there a brain reninangiotensin systems? Circ Res 41:147–153

    PubMed  Google Scholar 

  • Reid IA, Ramsay DJ (1975) The effect of intracerebroventricular administration of renin on drinking and blood pressure. Endocrinology 97:536–542

    PubMed  Google Scholar 

  • Reid IA, Simpson JB, Ramsay DJ, Kipen HM (1977) Mechanism of dipsogenic action of tetradecapeptide renin substrate. Fed Proc 36:482

    Google Scholar 

  • Rogers PW, Kurtzman NA (1972) Renal failure, uncontrollable thirst, and hyperreninemia. Cessation of thirst with bilateral nephrectomy. J Am Med Assoc 225:1236–1238

    Article  Google Scholar 

  • Rundgren M, Leksell LG, Lishajko F, Andersson B (1977) Deuterium induced extinction of ADH-release in response to intracerebroventricular infusion of hypertonic NaCl and angiotensin. Acta Physiol Scand 100:45–50

    PubMed  Google Scholar 

  • Sakai KK, Marks BH, George J, Koestner A (1974) Specific angiotensin II receptors in organ-cultured canine supra-optic nucleus cells. Life Sci 14:1337–1344

    Article  PubMed  Google Scholar 

  • Schwob JE, Johnson AK (1975) Evidence for involvement of the renin-angiotensin system in isoproterenol dipsogenesis. Fifth Annual Meeting of the Society for Neurosciences

    Google Scholar 

  • Schwob JE, Johnson AK (1977) Angiotensin-induced dipsogenesis in domestic fowl (Gallus gallus). J Comp Physiol Psychol 91:182–188

    PubMed  Google Scholar 

  • Scroop GC, Lowe RD (1968) Central pressor effect of angiotensin mediated by the parasympathetic nervous system. Nature 220:1331–1332

    PubMed  Google Scholar 

  • Scroop GC, Lowe RD (1969) Efferent pathways of the cardiovascular response to vertebral artery infusions of angiotensin in the dog. Clin Sci 37:605–619

    PubMed  Google Scholar 

  • Scroop GC, Katic RP, Brown MJ, Cain MD, Zeegers PJ (1975) Evidence for a significant contribution from central effects of angiotensin in the development of acute renal hypertension in the greyhound. Clin Sci Mol Med 48:115–119

    PubMed  Google Scholar 

  • Setler PE (1973) The role of catecholamines in thirst. In: Epstein AN, Kissileff HR, Stellar E (eds) The neuropsychology of thirst: New findings and advances in concepts. Winston, Washington, pp 279–291

    Google Scholar 

  • Severs WB, Daniels-Severs AE (1973) Effects of angiotensin on the central nervous system. Pharmacol Rev 25:415–449

    PubMed  Google Scholar 

  • Severs WB, Daniels AE, Smookler HH, Kinnard WJ, Buckley JP (1966) Interrelationship between angiotensin II and the sympathetic nervous system. J Pharmacol Exp Ther 153:530–537

    PubMed  Google Scholar 

  • Severs WB, Summy-Long J, Taylor JS, Connor JD (1970) A central effect of angiotensin: release of pituitary pressor material. J Pharmacol Exp Ther 174:27–34

    PubMed  Google Scholar 

  • Severs WB, Daniels-Severs A, Summy-Long J, Radio GJ (1971a) Effects of centrally administered angiotensin II on salt and water excretion. Pharmacology 6:242–252

    PubMed  Google Scholar 

  • Severs WB, Summy-Long J, Daniels-Severs AE, Connor JD (1971b) Influence of adrenergic blocking drugs on central angiotensin effects. Pharmacology 5:205–214

    PubMed  Google Scholar 

  • Severs WB, Summy-Long J, Daniels-Severs AE (1973) Effects of a converting enzyme inhibitor (SQ 2 088 1) on angiotensin-induced drinking. Proc Soc Exp Biol Med 142:203–204

    PubMed  Google Scholar 

  • Severs WB, Summy-Long J, Daniels-Severs A (1974) Angiotensin interaction with thirst mechanisms. Am J Physiol 226:340–344

    PubMed  Google Scholar 

  • Share L (1974) Blood pressure, blood volume, and the release of vasopressin. In: Greep RO, Astwood EB (eds) Handbook of physiology, sect 7: Endocrinology, vol IV, part 1. American Physiological Society, Washington DC, pp 243–255

    Google Scholar 

  • Shares L, Claybaugh JR, Shimizu K, Yamamoto M, Shade RE (1978) Role of the renin-angiotensin system and the prostaglandins in the control of vasopressin release. In: Barker Jørgensen C, Skadhauge E (eds) Osmotic and volume regulation. Munksgaard, Copenhagen, pp 248–257

    Google Scholar 

  • Share LG, Swanson LW (1974) Drinking induced by injection of angiotensin into forebrain and mid-brain sites of the monkey. J Physiol (Lond) 239:595–622

    PubMed  Google Scholar 

  • Shimizu K, Share L, Claybaugh JR (1973) Potentiation by angiotensin II of the vasopressin response to an increasing plasma osmolality. Endocrinology 93:42–50

    PubMed  Google Scholar 

  • Simpson JB, Routtenberg A (1973) Subfornical organ: site of drinking elicitation by angiotensin II. Science 181:1172–1175

    PubMed  Google Scholar 

  • Simpson JB, Epstein AN, Camardo JS Jr (1978) Localisation of receptors for the dipsogenic action of angiotensin II in the subfornical organ of the rat. J Comp Physiol Psychol 92:581–608

    PubMed  Google Scholar 

  • Sirett NE, McLean AS, Bray JJ, Hubbard JI (1977) Distribution of angiotensin II receptors in rat brain. Brain Res 122:299–312

    Article  PubMed  Google Scholar 

  • Skeggs LT, Lentz KE, Kahn JR, Shumay NP, Woods KR (1956) The amino acid sequence of hypertensin II. J Exp Med 104:193–197

    Article  PubMed  Google Scholar 

  • Smookler HH, Severs WB, Kinnard WJ, Buckley JP (1966) Centrally mediated cardiovascular effects of angiotensin II. J Pharmacol Exp Ther 153:485–494

    PubMed  Google Scholar 

  • Sokabe H (1974) Phylogeny of the renal effects of angiotensin. Kidney Int 6:263–271

    PubMed  Google Scholar 

  • Solomon TA, Buckley JP (1974) Inhibitory effects of central hypertensive activity of angiotensin I and II by 1-Sar-8-Ala-angiotensin II (saralasin acetate). J Pharmacol Sci 63:1109–1113

    Google Scholar 

  • Stricker EM (1973) Thirst, sodium appetite, and complementary physiological contributions to the regulation of intravascular fluid volume. In: Epstein AN, Kissileff HR, Stellar E (eds) The neuropsychology of thirst. Winston, Washington DC, pp 73–98

    Google Scholar 

  • Summy-Long J, Severs WB (1974) Angiotensin and thirst: studies with a converting enzyme inhibitor and a receptor antagonist. Life Sci 15:569–582

    Article  PubMed  Google Scholar 

  • Swanson LW, Marshall GR, Needleman P, Sharpe LG (1973) Characterisation of central angiotensin II receptors involved in the elicitation of drinking in the rat. Brain Res 49:441–446

    Article  PubMed  Google Scholar 

  • Sweet CS, Brody MJ (1970) Central inhibition of reflex vasodilation by angiotensin and reduced renal pressure. Am J Physiol 219:1751–1758

    PubMed  Google Scholar 

  • Sweet CS, Ferrario CM, Khosla MC, Bumpus FM (1973) Antagonism of peripheral and central effects of angiotensin II by (1-sarcosine, 8-isoleucine) angiotensin II. J Pharmacol Exp Ther 185:35–41

    PubMed  Google Scholar 

  • Takei Y (1977) Angiotensin and water intake in the Japanese quail (Coturnix coturnix japonica). Gen Comp Endocrinol 31:364–372

    Article  PubMed  Google Scholar 

  • Tang M, Falk JL (1974) Sar1-Ala8 angiotensin II blocks renin-angiotensin but not beta-adrenergic dipsogenesis. Pharmacol Biochem Behav 2:401–408

    Article  PubMed  Google Scholar 

  • Thorton SN, Massi M, Fitzsimons JT (1980) Cerebroventricular Na+ sensitivity and drinking in the pigeon Columba livia. Neurosci Lett Suppl 3: S 36

    Google Scholar 

  • Tigerstedt R, Bergman PG (1898) Niere und Kreislauf. Skand Arch Physiol 8:223–271

    Google Scholar 

  • Trippodo NC, McCaa RE, Guyton AC (1976) Effects of prolonged angiotensin II infusion on thirst. Am J Physiol 230:1063–1066

    PubMed  Google Scholar 

  • Ueda H, Katayama S, Kato R (1972) Area postrema angiotensin sensitive site in brain. Adv Exp Biol Med 17:109–116

    Google Scholar 

  • Uhlich E, Weber P, Eigler D, Gröschel-Stewart U (1975) Angiotensin stimulated AVP release in humans. Klin Wochenschr 53:177–180

    Article  PubMed  Google Scholar 

  • Ungerstedt U (1971) Adipsia and aphagia after 6-hydroxy-dopamine-induced degeneration of the nigro-striatal dopamine system. Acta Physiol Scand (Suppl 367) 82:95–122

    Google Scholar 

  • Verney EB (1947) The antidiuretic hormone and the factors which determine its release. Proc R Soc Lond (Biol) 135:25–106

    Google Scholar 

  • Vilhardt J, Hedquist P (1970) A possible role of prostaglandin E2 in the regulation of vasopressin secretion in rats. Life Sci 9:825–830

    Article  Google Scholar 

  • Wada M, Kobayashi H, Farner DS (1975) Induction of drinking in the whitecrowned sparrow, zonotrichia leucophrys gambelii, by intracranial injection of angiotensin II. Gen Comp Endocrinol 26:192–197

    Article  PubMed  Google Scholar 

  • Wayner MJ, Ono T, Nolley D (1973) Effects of angiotensin II on central neurones. Pharmacol Biochem Behav 1:679–691

    Article  PubMed  Google Scholar 

  • Witt DM, Keller AD, Batsel HL, Lynch JR (1952) Absence of thirst and resultant syndrome associated with anterior hypothalamectomy in the dog. Am J Physiol 171:780

    Google Scholar 

  • Yang H-YT, Neff NH (1972) Distribution and properties of angiotensin converting enzyme of rat brain. J Neurochem 19:2443–2450

    PubMed  Google Scholar 

  • Yu R, Dickinson CJ (1965) Neurogenic effects of angiotensin. Lancet II:1276–1277

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag

About this chapter

Cite this chapter

Fitzsimons, J.T. (1980). Angiotensin stimulation of the central nervous system. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 87. Reviews of Physiology, Biochemistry and Pharmacology, vol 87. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0030897

Download citation

  • DOI: https://doi.org/10.1007/BFb0030897

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-09944-4

  • Online ISBN: 978-3-540-39156-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics