Skip to main content
Log in

Hyperosmotic media inhibit voltage-dependent calcium influx and peptide release in Aplysia neurons

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The bag cell neurons of Aplysia provide a model system in which to investigate the effects of hyperosmolality on the electrical and secretory properties of neurons. Brief stimulation of these neurons triggers an afterdischarge of action potentials that lasts approximately 20–30 min, during which time they release several neuroactive peptides. We have found that pre-incubation of intact clusters of bag cell neurons in hyperosmotic media prior to stimulation prevents the initiation of afterdischarges. Furthermore, an increase in osmolality of the external medium during an ongoing afterdischarge causes its premature termination. Hyperosmotic media attenuate the release of peptide evoked by both electrically stimulated afterdischarges and potassium-induced depolarization. The ability of high potassium to depolarize the bag cell neurons is, however, not impaired. Exposure of isolated bag cell neurons to hyperosmotic media also inhibits the amplitude of action potentials evoked by depolarizing current injection and attenuates the voltage-dependent calcium current. In isolated bag cell neurons loaded with the calcium indicator dye, fura-2, hyperosmotic media reduced the rise in intracellular calcium levels that normally occurs in response to depolarization. Our results suggest that the effects of hyperosmotic media on peptide secretion in bag cell neurons can largely be attributed to their effects on calcium entry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arch, S. 1972. Biosynthesis of egg-laying hormone (ELH) in the bag cell neurons of Aplysia californica. J. Neurophysiol. 43:399–519

    Google Scholar 

  • Arieff, A.I., Caroll, H.J. 1972. Nonketotic hyperosmolar coma with hyperglycemia: Clinical features, pathophysiology, renal function; acid-base balance, plasma-cerebrospinal fluid equilibrium and effects of therapy in 37 cases. Medicine 51:73–94

    Google Scholar 

  • Arieff, A.I., Caroll, H.J. 1974. Cerebral edema and depression of sensorium in nonketotic hyperosmolar coma. Diabetes 23:525–531

    Google Scholar 

  • Berry, R.W. 1988. Alpha bag cell peptide reduces stimulated cAMP levels and pro-ELH synthesis in bag cells. Mol. Brain Res. 4:267–271

    Google Scholar 

  • Blankenship, J.E., Haskins, J.T. 1979. Electrotonic coupling among neuroendocrine cells in Aplysia. J. Neurophysiol. 42:347–355

    Google Scholar 

  • Brown, E.M., Pazoles, C.J., Creutz, C.E., Aurbach, G.D., Pollard, H.B. 1978. Role of anions in parathyroid hormone release from dispersed bovine parathyroid cells. Proc. Natl. Acad. Sci. USA 75:876–880

    Google Scholar 

  • Brown, R.O., Mayeri, E. 1989. Positive feedback by autoexcitatory neuropeptides in neuroendocrine bag cells of Aplysia. J. Neurosci. 9:1443–1451

    Google Scholar 

  • Chandler, D.E., Whitaker, M., Zimmerberg, J. 1989. High molecular weight polymers block cortical granule exocytosis in sea urchin eggs at the level of granule matrix disassembly. J. Cell Biol. 109:1269–1278

    Google Scholar 

  • Chiu, A.Y., Hunkapiller, M.W., Heller, E., Stuart, D.K., Hood, L.E., Strumwasser, F. 1979. Purification and primary structure of neuroactive egg-laying hormone of Aplysia californica. Proc. Natl. Acad. Sci. USA 76:6656–6660

    Google Scholar 

  • Connor, J.A. 1986. Digital imaging of free calcium changes and of spatial gradients in growing processes in single, mammalian central nervous system cells. Proc. Natl. Acad. Sci. USA 83:6179–6183

    Google Scholar 

  • Fink, L.A., Connor, J.A., Kaczmarek, L.K. 1988. Inositol triphosphate releases intracellularly stored calcium and modulates ion channels in molluscan neurons. J. Neurosci. 8:2544–2555

    Google Scholar 

  • Frazier, W.T., Kandel, E.R., Kupfermann, I., Waziri, R., Coggeshall, R.E. 1967. Morphological and functional properties of identified neurons in the abdominal ganglion of Aplysia californica. J. Neurophysiol. 30:1288–1351

    Google Scholar 

  • Grinstein, S., Cohen, S., Goetz, J.D., Rothstein, A. 1985. Osmotic and phorbol ester-induced activation of Na+/H+ exchange: Possible role of protein phosphorylation in lymphocyte volume regulation. J. Cell Biol. 101:269–276

    Google Scholar 

  • Grynkiewicz, G., Poenie, M., Tsien, R.Y. 1985. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260:3440–3450

    Google Scholar 

  • Hampton, R.Y., Holz, R.W. 1983. Effects of changes in osmolality on the stability and function of cultured chromaffin cells and the possible role of osmotic forces in exocytosis. J. Cell Biol. 96:1082–1088

    Google Scholar 

  • Heldman, E., Levine, M., Morita, K., Pollard, H.B. 1991. Osmotic strength differentiates between two types of calcium transport pathways regulating catecholamine secretion from cultured bovine chromaffin cells. Biochim. Biophys. Acta 1091:417–425

    Google Scholar 

  • Holz, R.W., Senter, R.A. 1986. The effects of osmolality and ionic strength on secretion from adrenal chromaffin cells permeabilized with digitonin. J. Neurochem. 46:1835–1842

    Google Scholar 

  • Kaczmarek, L.K., Finbow, M., Revel, J.-P., Strumwasser, F. 1979. The morphology and coupling of Aplysia bag cells within the abdominal ganglion and in cell culture. J. Neurobiol. 10:535–550

    Google Scholar 

  • Kaczmarek, L.K., Jennings, K.R., Strumwaser, F. 1982. An early sodium phase and a late calcium phase in the afterdischarge of peptide-secreting neurons of Aplysia. Brain Res. 238:105–115

    Google Scholar 

  • Kaczmarek, L.K., Strumwasser, F. 1981. The expression of longlasting afterdischarge by isolated Aplysia bag cell neurons. J. Neurosci. 1:626–634

    Google Scholar 

  • Kaczmarek, L.K., Strumwasser, F. 1984. A voltage-clamp analysis of currents underlying cyclic AMP-induced membrane modulation in isolated peptidergic neurons of Aplysia. J. Neurophysiol. 52:340–349

    Google Scholar 

  • Kater, S.B., Mattson, M.P., Cohan, C., Connor, J.A. 1988. Calcium regulation of the neuronal growth cone. Trends Neurosci. 11:315–321

    Google Scholar 

  • Kauer, J.A., Fisher, T.E., Kaczmarek, L.K. 1987. Alpha bag cell peptide directly modulates the excitability of the neurons that release it. J. Neurosci. 7:3623–3632

    Google Scholar 

  • Kazilek, C.J., Merkle, C.J., Chandler, D.E. 1988. Hyperosmotic inhibition of calcium signals and exocytosis in rabbit neutrophils. Am. J. Physiol. 254:C704-C718

    Google Scholar 

  • Knight, D.E., Baker, P.F. 1982. Calcium-dependence of catecholamine release from bovine adrenal medullary cells after exposure to intense electric fields. J. Membrane Biol. 68:107–140

    Google Scholar 

  • Knox, R.J., Quattrocki, E.A., Connor, J.A., Kaczmarek, L.K. 1992. Recruitment of calcium channels during rapid formation of putative release sites in isolated Aplysia neurons. Neuron (in press)

  • Ladona, M.G., Bader, M.F., Aunis, D. 1987. Influence of hypertonic solutions on catecholamine release from intact and permeabilized cultured chromaffin cells. Biochim. Biophys. Acta 927:18–25

    Google Scholar 

  • Loechner, K.J., Azhderian, E.M., Dreyer, R., Kaczmarek, L.K. 1990. Progressive potentiation of peptide release during a neuronal discharge. J. Neurophysiol. 63:738–744

    Google Scholar 

  • Loechner, K.J., Kaczmarek, L.K. 1989. Hypertonic solutions block peptide secretion and afterdischarges in Aplysia bag cell neurons. Soc. Neurosci. Abstr. 15:1275

    Google Scholar 

  • Loechner, K.J., Kaczmarek, L.K. 1990. Control of potassium currents and cyclic AMP levels by autoactive neuropeptides in Aplysia neurons. Brain Res. 532:1–6

    Google Scholar 

  • Loechner, K.J., Knox, R.J., Connor, J.A., Kaczmarek, L.K. 1991. Modification of calcium current by hyperosmotic media in control and phorbol ester treated neurons. Soc. Neurosci. Abstr. 17:774

    Google Scholar 

  • Mayeri, E., Rothman, B.S., Brownell, P.H., Branton, W.D., Padgett, L. 1985. Nonsynaptic characteristics of neurotransmission mediated by egg-laying hormone in the abdominal ganglion of Aplysia. J. Neurosci. 5:2060–2072

    Google Scholar 

  • Merkle, C.J., Chandler, D.E. 1989. Hyperosmolality inhibits exocytosis in sea urchin eggs by formation of a granule-free zone and arrest of pore widening. J. Membrane Biol. 112:223–232

    Google Scholar 

  • Newcomb, R., Scheller, R.H. 1987. Proteolytic processing of Aplysia egg-laying hormone and R3-R14 neuropeptide precursors. J. Neurosci. 7:853–863

    Google Scholar 

  • O'Sullivan, A.J., Burgoyne, R.D. 1988. The role of cytoplasmic pH in the inhibitory action of high osmolarity on secretion from bovine adrenal chromaffin cells. Biochim. Biophys. Acta 969:211–216

    Google Scholar 

  • Roth, M. 1971. Fluorescence reaction for amino acids. Anal. Chem. 43, 880–882

    Google Scholar 

  • Rothman, B.S., Mayeri, E., Brown, R.D., Yuan, P., Shively, J. 1983. Primary structure and neuronal effects of alpha bag cell peptide, a second candidate neurotransmitter encoded by a single gene in bag cell neurons of Aplysia. Proc. Natl. Acad. Sci. USA 80:5733–5757

    Google Scholar 

  • Rothman, B.S., Sigvardt, K.A., Mayeri, E. 1985. Co-release of five peptides, ELH, AP, alpha-, beta-, and gamma-BCP, derived from a common precursor protein of the bag cells of Aplysia. Soc. Neurosci. Abstr. 11:482

    Google Scholar 

  • Sato, N., Wang, X., Greer, M. 1991. Medium hyperosmolarity depresses thyrotropin-releasing hormone-induced Ca2+ influx and prolactin secretion in GH4C1 cells. Mol. Cell. Endocrinol. 77:193–198

    Google Scholar 

  • Scheller, R.H., Jackson, J.F., McAllister, L.B., Rothman, B.S., Mayeri, E., Axel, R. 1983. A single gene encodes multiple neuropeptides mediating a sterotyped behavior. Cell 32:7–22

    Google Scholar 

  • Scheller, R.H., Jackson, J.F., McAllister, L.B., Schwartz, J.H., Kandel, E.R., Axel, R. 1982. A family of genes that codes for ELH, a neuropeptide eliciting a stereotyped pattern of behavior in Aplysia. Cell. 28:707–719

    Google Scholar 

  • Sigvardt, K.A., Rothman, B.S., Brown, R.O., Mayeri, E. 1986. The bag cells of Aplysia as a multitransmitter system; identification of alpha bag cell peptide as a second transmitter. J. Neurosci. 6:803–813

    Google Scholar 

  • Strong, J.A., Fox, A.P., Tsien, R.W., Kaczmarek, L.K. 1987. Stimulation of protein kinase C recruits covert calcium channels in Aplysia bag cell neurons. Nature 325:714–717

    Google Scholar 

  • Whitaker, M., Zimmerberg, J. 1987. Inhibition of secretory granule discharge during exocytosis in sea urchin eggs by polymer solutions. J. Physiol. 389:527–539

    Google Scholar 

  • Zimmerberg, J., Bezanilla, F., Parsegian, V.A. 1990. Solute inaccessible aqueous volume changes during opening of the potassium channel of the squid giant axon. Biophys. J. 57:1049–1064

    Google Scholar 

  • Zimmerberg, J., Parsegian, V.A. 1986. Polymer inaccessible volume changes during opening and closing of a voltage-dependent ionic channel. Nature 323:36–39

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by NIH Grant NS-18492 to L.K. Kaczmarek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loechner, K.J., Knox, R.J., Connor, J.A. et al. Hyperosmotic media inhibit voltage-dependent calcium influx and peptide release in Aplysia neurons. J. Membarin Biol. 128, 41–52 (1992). https://doi.org/10.1007/BF00231869

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00231869

Key Words

Navigation