Skip to main content

Advertisement

Log in

Tetramethylpyrazine decreases hypothalamic glutamate, hydroxyl radicals and prostaglandin-E2 and has antipyretic effects

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

We studied the effects of tetramethylpyrazine (TMP) on the fever, increased plasma levels of tumor necrosis factor-α (TNF-α) and increased hypothalamic levels of glutamate, hydroxyl radicals and prostaglandin-E2 (PGE2) induced by lipopolysaccharide (LPS).

Materials and methods

The microdialysis probes were stereotaxically and chronically implanted into the hypothalamus of rabbit brain for determining extracellular levels of glutamate, hydroxyl radials, and PGE2. In addition, both the body core temperature and plasma levels of TNF-α were measured.

Results

All the body core temperature, plasma levels of TNF-α, and hypothalamic levels of glutamate, hydroxyl radicals, and PGE2 were up-graded by an intravenous dose of LPS (2 μg/kg). Pretreatment with intravenous TMP (10–40 mg/kg) or intracerebroventricular TMP (130 μg in 20 μl per animal) 1 h before LPS administration significantly attenuated the LPS-induced fever as well as the increased hypothalamic levels of glutamate, hydroxyl radicals, and PGE2. LPS-induced fever could also be attenuated by intravenous or intracerebroventricular TMP 1 h after LPS injection.

Conclusion

TMP preconditioning may cause its antipyretic action by reducing plasma levels of TNF-α as well as hypothalamic levels of glutamate, hydroxyl radicals, and PGE2 in rabbits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kao CH, Huang WT, Lin MT, Wu WS. Central interleukin-10 attenuated lipopolysaccharide-induced changes in core temperature and hypothalamic glutamate, hydroxyl radicals and prostaglandin-E2. Eur J Pharmacol. 2011;654(2):187–93.

    Article  PubMed  CAS  Google Scholar 

  2. Tsai CC, Lin MT, Wang JJ, Liao JF, Huang WT. The antipyretic effects of baicalin in lipopolysaccharide-evoked fever in rabbits. Neuropharmacology. 2006;51(4):709–17.

    Article  PubMed  CAS  Google Scholar 

  3. Niu KC, Huang WT, Lin MT, Huang KF. Hyperbaric oxygen causes both antiinflammation and antipyresis in rabbits. Eur J Pharmacol. 2009;606(1–3):240–5.

    Article  PubMed  CAS  Google Scholar 

  4. Hou CC, Lin H, Chang CP, Huang WT, Lin MT. Oxidative stress and pyrogenic fever pathogenesis. Eur J Pharmacol. 2011;667(1–3):6–12.

    Article  PubMed  CAS  Google Scholar 

  5. Liao F. Herbs of activating blood circulation to remove blood stasis. Clin Hemorheol Microcirc. 2000;23(2–4):127–31.

    PubMed  CAS  Google Scholar 

  6. Liu SY, Sylvester DM. Antiplatelet structure-activity relationship of tetramethylpyrazine. Life Sci. 1994;55(17):1317–26.

    Article  PubMed  CAS  Google Scholar 

  7. Liu CF, Lin MH, Lin CC, Chang HW, Lin SC. Protective effect of tetramethylpyrazine on absolute ethanol-induced renal toxicity in mice. J Biomed Sci. 2002;9(4):299–302.

    Article  PubMed  CAS  Google Scholar 

  8. Zhang Z, Wei T, Hou J, Li G, Yu S, Xin W. Tetramethylpyrazine scavenges superoxide anion and decreases nitric oxide production in human polymorphonuclear leukocytes. Life Sci. 2003;72(22):2465–72.

    Article  PubMed  CAS  Google Scholar 

  9. Liao MH, Wu CC, Yen MH. Beneficial effects of tetramethylpyrazine, an active constituent of Chinese herbs, on rats with endotoxemia. Proc Nati Sci Counc Repub China B. 1998;22(1):46–54.

    CAS  Google Scholar 

  10. Juan SH, Chen CH, Hsu YH, Hou CC, Chen TH, Lin H, et al. Tetramethylpyrazine protects rat renal tubular cell apoptosis induced by gentamicin. Nephrol Dial Transpl. 2007;22(3):732–9.

    Article  CAS  Google Scholar 

  11. Sawyer CH, Everett JW, Green JD. The rabbit diencephalon in stereotaxic coordinates. J Comp Neurol. 1954;101(3):801–24.

    Article  PubMed  CAS  Google Scholar 

  12. Huang WT, Lin MT, Chang CP. An NMDA receptor-dependent hydroxyl radical pathway in the rabbit hypothalamus may mediate lipopolysaccharide fever. Neuropharmacology. 2006;50(4):504–11.

    Article  PubMed  CAS  Google Scholar 

  13. Huang WT, Niu KC, Chang CK, Lin MT, Chang CP. Curcumin inhibits the increase of glutamate, hydroxyl radicals and PGE2 in the hypothalamus and reduces fever during LPS-induced systemic inflammation in rabbits. Eur J Pharmacol. 2008;593(1–3):105–11.

    Article  PubMed  CAS  Google Scholar 

  14. Yang CY, Lin MT. Oxidative stress in rats with heatstroke-induced cerebral ischemia. Stroke. 2002;33(3):790–4.

    Article  PubMed  Google Scholar 

  15. Pedersen BK, Steensberg A, Schjerling P. Exercise and interleukin-6. Curr Opin Hematol. 2001;8:137–41.

    Article  PubMed  CAS  Google Scholar 

  16. Sue YM, Cheng CF, Chang CC, Chou Y, Chen CH, Juan SH. Antioxidation and anti-inflammation by haem oxygenase-1 contribute to protection by tetramethylpyrazine against gentamicin-induced apoptosis in murine renal tubular cells. Nephrol Dial Transpl. 2009;24(3):769–77.

    Article  CAS  Google Scholar 

  17. Zhang C, Wang SZ, Zuo PP, Cui X, Cai J. Protective effect of tetramethylpyrazine on learning and memory function in D-galactose-lesioned mice. Chin Med Sci J. 2004;19(3):180–4.

    PubMed  CAS  Google Scholar 

  18. Fan LH, Wang KZ, Cheng B, Wang CS, Dang XQ. Anti-apoptotic and neuroprotective effects of Tetramethylpyrazine following spinal cord ischemia in rabbits. BMC Neurosci. 2006;7:48.

    Article  PubMed  Google Scholar 

  19. Li SY, Jia YH, Sun WG, Tang Y, An GS, Ni JH, et al. Stabilization of mitochondrial function by tetramethylpyrazine protects against kainate-induced oxidative lesions in the rat hippocampus. Free Radic Biol Med. 2010;48(4):597–608.

    Article  PubMed  CAS  Google Scholar 

  20. Kluger MJ. Fever: role of pyrogens and cryogens. Physiol Rev. 1995;71(1):93–127.

    Google Scholar 

  21. Bhattacharyya J, Biswas S, Datta AG. Mode of action of endotoxin: role of free radicals and antioxidants. Curr Med Chem. 2004;11(3):359–68.

    Article  PubMed  CAS  Google Scholar 

  22. Dinarello CA. Infection, fever, and exogenous and endogenous pyrogens: some concepts have changed. J Endotoxin Res. 2004;10(4):201–22.

    PubMed  CAS  Google Scholar 

  23. Cao C, Matsumura K, Ozaki M, Watanabe Y. Lipopolysaccharide injected into the cerebral ventricle evokes fever through induction of cyclooxygenase-2 in brain endothelial cells. J Neurosci. 1999;19(2):716–25.

    PubMed  CAS  Google Scholar 

  24. Elmquist JK, Breder CD, Sherin JE, Scammell TE, Hickey WF, Dewitt D, et al. Intravenous lipopolysaccharide induces cyclooxygenase 2-like immunoreactivity in rat brain perivascular microglia and meningeal macrophages. J Comp Neurol. 1997;381(2):119–29.

    Article  PubMed  CAS  Google Scholar 

  25. Van Dam AM, De Vries HE, Kuiper J, Zijlstra FJ, De Boer AG, Tilders FJ, et al. Interleukin-1 receptors on rat brain endothelial cells: a role in neuroimmune interaction? FASEB J. 1996;10(2):351–6.

    PubMed  Google Scholar 

  26. Blatteis CM. Role of the OVLT in the febrile response to circulating pyrogens. Prog Brain Res. 1992;91:409–12.

    Article  PubMed  CAS  Google Scholar 

  27. Breder CD, Hazuka C, Ghayur T, Klug C, Huginin M, Yasuda K, et al. Regional induction of tumor necrosis factor alpha expression in the mouse brain after systemic lipopolysaccharide administration. Proc Natl Acad Sci USA. 1994;91(24):11393–7.

    Article  PubMed  CAS  Google Scholar 

  28. Buttini M, Boddeke H. Peripheral lipopolysaccharide stimulation induces interleukin-1β messenger RNA in rat brain microglial cells. Neuroscience. 1995;65(2):523–30.

    Article  PubMed  CAS  Google Scholar 

  29. Gatti S, Bartfai T. Induction of tumor necrosis factor-alpha mRNA in the brain after peripheral endotoxin treatment: comparison with interleukin-1 family and interleukin-6. Brain Res. 1993;624(1–2):291–4.

    Article  PubMed  CAS  Google Scholar 

  30. Laye S, Parnet P, Goujon E, Dantzer R. Peripheral administration of lipopolysaccharide induces the expression of cytokine transcripts in the brain and pituitary of mice. Brain Res Mol Brain Res. 1994;27(1):157–62.

    Article  PubMed  CAS  Google Scholar 

  31. Tilders FJ, DeRijk RH, Van Dam AM, Vincent VA, Schotanus K, Persoons JH. Activation of the hypothalamus-pituitary-adrenal axis by bacterial endotoxins: routes and intermediate signals. Psychoneuroendocrinology. 1994;19(2):209–32.

    Article  PubMed  CAS  Google Scholar 

  32. van Dam AM, Brouns M, Louisse S, Berkenbosch F. Appearance of interleukin-1 in macrophages and in ramified microglia in the brain of endotoxin-treated rats: a pathway for the induction of non-specific symptoms of sickness? Brain Res. 1992;588(2):291–6.

    Article  PubMed  Google Scholar 

  33. Asehnoune K, Strassheim D, Mitra S, Kim JY, Abraham E. Involvement of reactive oxygen species in Toll-like receptor 4-dependent activation of NF-kappa B. J Immunol. 2004;172(4):2522–9.

    PubMed  CAS  Google Scholar 

  34. Blackwell TS, Blackwell TR, Holden EP, Christman BW, Christman JW. In vivo antioxidant treatment suppresses nuclear factor-kappa B activation and neutrophilic lung inflammation. J Immunol. 1996;157(4):1630–7.

    PubMed  CAS  Google Scholar 

  35. Oh GS, Pae HO, Choi BM, Seo EA, Kim DH, Shin MK, et al. 20(S)-Protopanaxatriol, one of ginsenoside metabolites, inhibits inducible nitric oxide synthase and cyclooxygenase-2 expressions through inactivation of nuclear factor-kappaB in RAW 264.7 macrophages stimulated with lipopolysaccharide. Cancer Lett. 2004;205(1):23–9.

    Article  PubMed  CAS  Google Scholar 

  36. Huang WT, Lin MT, Won SJ. Staphylococcal enterotoxin A-induced fever is associated with increased circulating levels of cytokines in rabbits. Infect Immun. 1997;65(7):2656–62.

    PubMed  CAS  Google Scholar 

  37. Lin JH, Lin MT. Inhibition of nitric oxide synthase or cyclo-oxygenase pathways in organum vasculosum laminae terminalis attenuates interleukin-1β fever in rabbits. Neurosci Lett. 1996;208(3):155–8.

    Article  PubMed  CAS  Google Scholar 

  38. Lin JH, Lin MT. Nitric oxide synthase-cyclo-oxygenase pathways in organum vasculosum laminae terminalis: possible role in pyrogenic fever in rabbits. Br J Pharmacol. 1996;118(1):179–85.

    Article  PubMed  CAS  Google Scholar 

  39. Lin MT, Lin JH. Involvement of tyrosine kinase in the pyrogenic fever exerted by NOS pathways in organum vasculosum laminae terminalis. Neuropharmacology. 2000;39(2):347–52.

    Article  PubMed  CAS  Google Scholar 

  40. Lee JJ, Huang WT, Shao DZ, Liao JF, Lin MT. Blocking NF-kappaB activation may be an effective strategy in the fever therapy. Jpn J Physiol. 2003;53(5):367–75.

    Article  PubMed  CAS  Google Scholar 

  41. Shao DZ, Lee JJ, Huang WT, Liao JF, Lin MT. Inhibition of nuclear factor-kappa B prevents staphylococcal enterotoxin A-induced fever. Mol Cell Biochem. 2004;262(1–2):177–85.

    Article  PubMed  CAS  Google Scholar 

  42. Ajmone-Cat MA, Nicolini A, Minghetti L. Prolonged exposure of microglia to lipopolysaccharide modifies the intracellular signaling pathways and selectively promotes prostaglandin E2 synthesis. J Neurochem. 2003;87(5):1193–203.

    Article  PubMed  CAS  Google Scholar 

  43. Wang T, Qin L, Liu B, Liu Y, Wilson B, Eling TE, et al. Role of reactive oxygen species in LPS-induced production of prostaglandin E2 in microglia. J Neurochem. 2004;88(4):939–47.

    Article  PubMed  CAS  Google Scholar 

  44. Liu HT, Du YG, He JL, Chen WJ, Li WM, Yang Z, et al. Tetramethylpyrazine inhibits production of nitric oxide and inducible nitric oxide synthase in lipopolysaccharide-induced N9 microglial cells through blockade of MAPK and PI3K/Akt signaling pathways, and suppression of intracellular reactive oxygen species. J Ethnopharmacol. 2010;129(3):335–43.

    Article  PubMed  CAS  Google Scholar 

  45. Zhang J, Rivest S. Is survival possible without arachidonate metabolites in the brain during systemic infection? News Physiol Sci. 2003;18:137–42.

    PubMed  CAS  Google Scholar 

  46. Turrin NP, Rivest S. Unraveling the molecular details involved in the intimate link between the immune and neuroendocrine systems. Exp Biol Med. 2004;229(10):996–1006.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Science Council (Taipei, Taiwan, China) NSC 96-2314-B-384-002 and NSC 96-2314-B-384-003-MY3 and the Department of Health of Republic of China ODH 99-TD-B-111-003 Center of Excellence for Clinical Trial and Research in Neuroscience.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Hsien Lin.

Additional information

Responsible Editor: Michael Parnham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, CH., Huang, WT., Kao, CH. et al. Tetramethylpyrazine decreases hypothalamic glutamate, hydroxyl radicals and prostaglandin-E2 and has antipyretic effects. Inflamm. Res. 62, 527–535 (2013). https://doi.org/10.1007/s00011-013-0606-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-013-0606-3

Keywords

Navigation