Skip to main content
Log in

Tumor necrosis factor (TNF) modulates synaptic plasticity in a concentration-dependent manner through intracellular calcium stores

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The role of inflammatory signaling pathways in synaptic plasticity has long been identified. Yet, it remains unclear how inflammatory cytokines assert their pleiotropic effects on neural plasticity. Moreover, the neuronal targets through which inflammatory cytokines assert their effects on plasticity remain not well-understood. In an attempt to learn more about the plasticity-modulating effects of the pro-inflammatory cytokine tumor necrosis factor (TNF), we used two-pathway long-term potentiation (LTP) experiments at Schaffer collateral-CA1 synapses to test for concentration-dependent effects of TNF on synaptic plasticity. We report that high concentrations of TNF (1 μg/mL) impair the ability of mouse CA1 pyramidal neurons to express synaptic plasticity without affecting baseline synaptic transmission and/or previously established LTP. Interestingly, 100 ng/mL of TNF has no apparent effect on LTP, while low concentrations (1 ng/mL) promote the ability of neurons to express LTP. These dose-dependent metaplastic effects of TNF are modulated by intracellular calcium stores: Pharmacological activation of intracellular calcium stores with ryanodine (10 μM) reverses the negative effects of TNF[high], and the plasticity-promoting effects of TNF[low] are blocked when intracellular calcium stores are depleted with thapsigargin (1 μM). Consistent with this result, TNF does not promote plasticity in synaptopodin-deficient preparations, which show deficits in neuronal calcium store-mediated synaptic plasticity. Thus, we propose that TNF mediates its pleiotropic effects on synaptic plasticity in a concentration-dependent manner through signaling pathways that are modulated by intracellular calcium stores and require the presence of synaptopodin. These results demonstrate that TNF can act as mediator of metaplasticity, which is of considerable relevance in the context of brain diseases associated with increased TNF levels and alterations in synaptic plasticity.

Key messages

• TNF modulates the ability of neurons to express synaptic plasticity.

• High concentrations of TNF impair synaptic plasticity.

• Low concentrations of TNF improve synaptic plasticity.

• TNF does not affect previously established long-term potentiation.

• Plasticity effects of TNF are modulated by intracellular calcium stores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abraham WC (2008) Metaplasticity: tuning synapses and networks for plasticity. Nat Rev Neurosci 9:387

    Article  PubMed  CAS  Google Scholar 

  2. Aggarwal BB (2003) Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 3:745–756

    Article  PubMed  CAS  Google Scholar 

  3. Albensi BC, Mattson MP (2000) Evidence for the involvement of TNF and NF-kappaB in hippocampal synaptic plasticity. Synapse 35:151–159

    Article  PubMed  CAS  Google Scholar 

  4. Bas Orth C, Schultz C, Muller CM, Frotscher M, Deller T (2007) Loss of the cisternal organelle in the axon initial segment of cortical neurons in synaptopodin-deficient mice. J Comp Neurol 504:441–449

    Article  PubMed  Google Scholar 

  5. Beattie EC, Stellwagen D, Morishita W, Bresnahan JC, Ha BK, Von Zastrow M, Beattie MS, Malenka RC (2002) Control of synaptic strength by glial TNFalpha. Science 295:2282–2285

    Article  PubMed  CAS  Google Scholar 

  6. Becker D, Zahn N, Deller T, Vlachos A (2013) Tumor necrosis factor alpha maintains denervation-induced homeostatic synaptic plasticity of mouse dentate granule cells. Front Cell Neurosci 7:257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Becker D, Deller T, Vlachos A (2015) Tumor necrosis factor (TNF)-receptor 1 and 2 mediate homeostatic synaptic plasticity of denervated mouse dentate granule cells. Sci Rep 5:12726

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Bliss TV, Collingridge GL, Kaang BK, Zhuo M (2016) Synaptic plasticity in the anterior cingulate cortex in acute and chronic pain. Nat Rev Neurosci 17:485–496

    Article  PubMed  CAS  Google Scholar 

  9. Chang R, Yee KL, Sumbria RK (2017) Tumor necrosis factor alpha inhibition for Alzheimer’s disease. J Cent Nerv Syst Dis 9:1179573517709278

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chung WS, Welsh CA, Barres BA, Stevens B (2015) Do glia drive synaptic and cognitive impairment in disease? Nat Neurosci 18:1539–1545

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Cumiskey D, Butler MP, Moynagh PN, O’connor J, J. (2007) Evidence for a role for the group I metabotropic glutamate receptor in the inhibitory effect of tumor necrosis factor-alpha on long-term potentiation. Brain Res 1136:13–19

    Article  PubMed  CAS  Google Scholar 

  12. Cunningham AJ, Murray CA, O’neill LA, Lynch MA, O’connor JJ (1996) Interleukin-1 beta (IL-1 beta) and tumour necrosis factor (TNF) inhibit long-term potentiation in the rat dentate gyrus in vitro. Neurosci Lett 203:17–20

    Article  PubMed  CAS  Google Scholar 

  13. Del Prete D, Checler F, Chami M (2014) Ryanodine receptors: physiological function and deregulation in Alzheimer disease. Mol Neurodegener 9:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Deller T, Mundel P, Frotscher M (2000) Potential role of synaptopodin in spine motility by coupling actin to the spine apparatus. Hippocampus 10:569–581

    Article  PubMed  CAS  Google Scholar 

  15. Deller T, Korte M, Chabanis S, Drakew A, Schwegler H, Stefani GG, Zuniga A, Schwarz K, Bonhoeffer T, Zeller R, Frotscher M, Mundel P (2003) Synaptopodin-deficient mice lack a spine apparatus and show deficits in synaptic plasticity. Proc Natl Acad Sci U S A 100:10494–10499

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Fifkova E, Markham JA, Delay RJ (1983) Calcium in the spine apparatus of dendritic spines in the dentate molecular layer. Brain Res 266:163–168

    Article  PubMed  CAS  Google Scholar 

  17. Finch EA, Tanaka K, Augustine GJ (2012) Calcium as a trigger for cerebellar long-term synaptic depression. Cerebellum 11:706–717

    Article  PubMed  CAS  Google Scholar 

  18. Glazner GW, Camandola S, Geiger JD, Mattson MP (2001) Endoplasmic reticulum D-myo-inositol 1,4,5-trisphosphate-sensitive stores regulate nuclear factor-kappaB binding activity in a calcium-independent manner. J Biol Chem 276:22461–22467

    Article  PubMed  CAS  Google Scholar 

  19. Gray EG (1959) Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. J Anat 93:420–433

    PubMed  PubMed Central  CAS  Google Scholar 

  20. He P, Liu Q, Wu J, Shen Y (2012) Genetic deletion of TNF receptor suppresses excitatory synaptic transmission via reducing AMPA receptor synaptic localization in cortical neurons. FASEB J 26:334–345

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Hong S, Dissing-Olesen L, Stevens B (2016) New insights on the role of microglia in synaptic pruning in health and disease. Curr Opin Neurobiol 36:128–134

    Article  PubMed  CAS  Google Scholar 

  22. Hulme SR, Jones OD, Ireland DR, Abraham WC (2012) Calcium-dependent but action potential-independent BCM-like metaplasticity in the hippocampus. J Neurosci 32:6785–6794

    Article  PubMed  CAS  Google Scholar 

  23. Hulme SR, Jones OD, Abraham WC (2013) Emerging roles of metaplasticity in behaviour and disease. Trends Neurosci 36:353–362

    Article  PubMed  CAS  Google Scholar 

  24. Jedlicka P, Deller T (2017) Understanding the role of synaptopodin and the spine apparatus in Hebbian synaptic plasticity - new perspectives and the need for computational modeling. Neurobiol Learn Mem 138:21–30

    Article  PubMed  CAS  Google Scholar 

  25. Jedlicka P, Schwarzacher SW, Winkels R, Kienzler F, Frotscher M, Bramham CR, Schultz C, Bas Orth C, Deller T (2009) Impairment of in vivo theta-burst long-term potentiation and network excitability in the dentate gyrus of synaptopodin-deficient mice lacking the spine apparatus and the cisternal organelle. Hippocampus 19:130–140

    Article  PubMed  CAS  Google Scholar 

  26. Kaneko M, Stellwagen D, Malenka RC, Stryker MP (2008) Tumor necrosis factor-alpha mediates one component of competitive, experience-dependent plasticity in developing visual cortex. Neuron 58:673–680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Korkotian E, Segal M (2011) Synaptopodin regulates release of calcium from stores in dendritic spines of cultured hippocampal neurons. J Physiol 589:5987–5995

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Korkotian E, Frotscher M, Segal M (2014) Synaptopodin regulates spine plasticity: mediation by calcium stores. J Neurosci 34:11641–11651

    Article  PubMed  CAS  Google Scholar 

  29. Kosaka T (1980) The axon initial segment as a synaptic site: ultrastructure and synaptology of the initial segment of the pyramidal cell in the rat hippocampus (CA3 region). J Neurocytol 9:861–882

    Article  PubMed  CAS  Google Scholar 

  30. Kronschläger MT, Drdla-Schutting R, Gassner M, Honsek SD, Teuchmann HL, Sandkühler J (2016) Gliogenic LTP spreads widely in nociceptive pathways. Science 354:1144–1148

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Lenz M, Ben Shimon M, Deller T, Vlachos A, Maggio N (2017) Pilocarpine-induced status epilepticus is associated with changes in the actin-modulating protein synaptopodin and alterations in long-term potentiation in the mouse hippocampus. Neural Plast 2017:2652560

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Li Q, Rothkegel M, Xiao ZC, Abraham WC, Korte M, Sajikumar S (2014) Making synapses strong: metaplasticity prolongs associativity of long-term memory by switching synaptic tag mechanisms. Cereb Cortex 24:353–363

    Article  PubMed  Google Scholar 

  33. Li Q, Navakkode S, Rothkegel M, Soong TW, Sajikumar S, Korte M (2017) Metaplasticity mechanisms restore plasticity and associativity in an animal model of Alzheimer’s disease. Proc Natl Acad Sci U S A 114:5527–5532

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Lindsey JD, Ellisman MH (1985) The neuronal endomembrane system. III. The origins of the axoplasmic reticulum and discrete axonal cisternae at the axon hillock. J Neurosci 5:3135–3144

    Article  PubMed  CAS  Google Scholar 

  35. Liu Y, Zhou LJ, Wang J, Li D, Ren WJ, Peng J, Wei X, Xu T, Xin WJ, Pang RP, Li YY, Qin ZH, Murugan M, Mattson MP, Wu LJ, Liu XG (2017) TNF-α differentially regulates synaptic plasticity in the hippocampus and spinal cord by microglia-dependent mechanisms after peripheral nerve injury. J Neurosci 37:871–881

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Lu B, Nagappan G, Guan X, Nathan PJ, Wren P (2013) BDNF-based synaptic repair as a disease-modifying strategy for neurodegenerative diseases. Nat Rev Neurosci 14:401–416

    Article  PubMed  CAS  Google Scholar 

  37. Macewan DJ (2002) TNF receptor subtype signalling: differences and cellular consequences. Cell Signal 14:477–492

    Article  PubMed  CAS  Google Scholar 

  38. Maggio N, Segal M (2007) Unique regulation of long term potentiation in the rat ventral hippocampus. Hippocampus 17:10–25

    Article  PubMed  CAS  Google Scholar 

  39. Maggio N, Vlachos A (2014) Synaptic plasticity at the interface of health and disease: new insights on the role of endoplasmic reticulum intracellular calcium stores. Neuroscience 281:135–146

    Article  PubMed  CAS  Google Scholar 

  40. Maggio N, Shavit-Stein E, Dori A, Blatt I, Chapman J (2013) Prolonged systemic inflammation persistently modifies synaptic plasticity in the hippocampus: modulation by the stress hormones. Front Mol Neurosci 6:46

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Maggio N, Itsekson Z, Ikenberg B, Strehl A, Vlachos A, Blatt I, Tanne D, Chapman J (2014) The anticoagulant activated protein C (aPC) promotes metaplasticity in the hippocampus through an EPCR-PAR1-S1P1 receptors dependent mechanism. Hippocampus 24:1030–1038

    Article  PubMed  CAS  Google Scholar 

  42. Monday HR, Castillo PE (2017) Closing the gap: long-term presynaptic plasticity in brain function and disease. Curr Opin Neurobiol 45:106–112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Mundel P, Heid HW, Mundel TM, Kruger M, Reiser J, Kriz W (1997) Synaptopodin: an actin-associated protein in telencephalic dendrites and renal podocytes. J Cell Biol 139:193–204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Ng AN, Toresson H (2011) Endoplasmic reticulum dynamics in hippocampal dendritic spines induced by agonists of type I metabotropic glutamate but not by muscarinic acetylcholine receptors. Synapse 65:351–355

    Article  PubMed  CAS  Google Scholar 

  45. Palay SL, Sotelo C, Peters A, Orkand PM (1968) The axon hillock and the initial segment. J Cell Biol 38:193–201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Pchitskaya E, Popugaeva E, Bezprozvanny I (2018) Calcium signaling and molecular mechanisms underlying neurodegenerative diseases. Cell Calcium 70:87–94

    Article  PubMed  CAS  Google Scholar 

  47. Pickering M, Cumiskey D, O’connor JJ (2005) Actions of TNF-alpha on glutamatergic synaptic transmission in the central nervous system. Exp Physiol 90:663–670

    Article  PubMed  CAS  Google Scholar 

  48. Pollock J, Mcfarlane SM, Connell MC, Zehavi U, Vandenabeele P, Macewan DJ, Scott RH (2002) TNF-alpha receptors simultaneously activate Ca2+ mobilisation and stress kinases in cultured sensory neurones. Neuropharmacology 42:93–106

    Article  PubMed  CAS  Google Scholar 

  49. Pribiag H, Stellwagen D (2014) Neuroimmune regulation of homeostatic synaptic plasticity. Neuropharmacology 78:13–22

    Article  PubMed  CAS  Google Scholar 

  50. Roeper J (2018) Closing gaps in brain disease-from overlapping genetic architecture to common motifs of synapse dysfunction. Curr Opin Neurobiol 48:45–51

    Article  PubMed  CAS  Google Scholar 

  51. Sajikumar S, Li Q, Abraham WC, Xiao ZC (2009) Priming of short-term potentiation and synaptic tagging/capture mechanisms by ryanodine receptor activation in rat hippocampal CA1. Learn Mem 16:178–186

    Article  PubMed  Google Scholar 

  52. Salter MW, Stevens B (2017) Microglia emerge as central players in brain disease. Nat Med 23:1018–1027

    Article  PubMed  CAS  Google Scholar 

  53. Santello M, Volterra A (2012) TNFalpha in synaptic function: switching gears. Trends Neurosci 35:638–647

    Article  PubMed  CAS  Google Scholar 

  54. Santos LE, Ferreira ST (2017) Crosstalk between endoplasmic reticulum stress and brain inflammation in Alzheimer’s disease. Neuropharmacology 136:350–360

  55. Segal M, Korkotian E (2016) Roles of calcium stores and store-operated channels in plasticity of dendritic spines. Neuroscientist 22:477–485

    Article  PubMed  CAS  Google Scholar 

  56. Shamim D, Laskowski M (2017) Inhibition of inflammation mediated through the tumor necrosis factor alpha biochemical pathway can lead to favorable outcomes in Alzheimer disease. J Cent Nerv Syst Dis 9:1179573517722512

    Article  PubMed  PubMed Central  Google Scholar 

  57. Spacek J (1985) Three-dimensional analysis of dendritic spines. II. Spine apparatus and other cytoplasmic components. Anat Embryol (Berl) 171:235–243

    Article  CAS  Google Scholar 

  58. Steinmetz CC, Turrigiano GG (2010) Tumor necrosis factor-alpha signaling maintains the ability of cortical synapses to express synaptic scaling. J Neurosci 30:14685–14690

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Stellwagen D, Malenka RC (2006) Synaptic scaling mediated by glial TNF-alpha. Nature 440:1054–1059

    Article  PubMed  CAS  Google Scholar 

  60. Stellwagen D, Beattie EC, Seo JY, Malenka RC (2005) Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-alpha. J Neurosci 25:3219–3228

    Article  PubMed  CAS  Google Scholar 

  61. Stephenson J, Nutma E, Van Der Valk P, Amor S (2018) Inflammation in CNS neurodegenerative diseases. Immunology 154:204–219

  62. Strehl A, Lenz M, Itsekson-Hayosh Z, Becker D, Chapman J, Deller T, Maggio N, Vlachos A (2014) Systemic inflammation is associated with a reduction in synaptopodin expression in the mouse hippocampus. Exp Neurol 261:230–235

    Article  PubMed  CAS  Google Scholar 

  63. Tancredi V, D’arcangelo G, Grassi F, Tarroni P, Palmieri G, Santoni A, Eusebi F (1992) Tumor necrosis factor alters synaptic transmission in rat hippocampal slices. Neurosci Lett 146:176–178

    Article  PubMed  CAS  Google Scholar 

  64. Toresson H, Grant SG (2005) Dynamic distribution of endoplasmic reticulum in hippocampal neuron dendritic spines. Eur J Neurosci 22:1793–1798

    Article  PubMed  Google Scholar 

  65. Turrigiano GG (2006) More than a sidekick: glia and homeostatic synaptic plasticity. Trends Mol Med 12:458–460

    Article  PubMed  CAS  Google Scholar 

  66. Vlachos A (2012) Synaptopodin and the spine apparatus organelle-regulators of different forms of synaptic plasticity? Ann Anat 194:317–320

    Article  PubMed  CAS  Google Scholar 

  67. Vlachos A, Maggio N, Segal M (2008) Lack of correlation between synaptopodin expression and the ability to induce LTP in the rat dorsal and ventral hippocampus. Hippocampus 18:1–4

    Article  PubMed  CAS  Google Scholar 

  68. Vlachos A, Korkotian E, Schonfeld E, Copanaki E, Deller T, Segal M (2009) Synaptopodin regulates plasticity of dendritic spines in hippocampal neurons. J Neurosci 29:1017–1033

    Article  PubMed  CAS  Google Scholar 

  69. Vlachos A, Orth CB, Schneider G, Deller T (2012) Time-lapse imaging of granule cells in mouse entorhinohippocampal slice cultures reveals changes in spine stability after entorhinal denervation. J Comp Neurol 520:1891–1902

    Article  PubMed  Google Scholar 

  70. Vlachos A, Ikenberg B, Lenz M, Becker D, Reifenberg K, Bas-Orth C, Deller T (2013) Synaptopodin regulates denervation-induced homeostatic synaptic plasticity. Proc Natl Acad Sci U S A 110:8242–8247

    Article  PubMed  PubMed Central  Google Scholar 

  71. Wall AM, Mukandala G, Greig NH, O’Connor JJ (2015) Tumor necrosis factor-α potentiates long-term potentiation in the rat dentate gyrus after acute hypoxia. J Neurosci Res 93:815–829

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This work was supported by German-Israeli-Foundation (GIF G-1317-418.13/2015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nicola Maggio or Andreas Vlachos.

Ethics declarations

All experiments were approved by the Institutional Animal Care and Use Committee of The Chaim Sheba Medical Center (Tel HaShomer, Israel), which adheres to the Israeli law on the use of laboratory animals and NIH rules. Experimental procedures were performed also according to the German animal welfare legislation as approved by the animal welfare officer at Albert-Ludwigs-University Freiburg, Faculty of Medicine. Human material was not employed in this study.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maggio, N., Vlachos, A. Tumor necrosis factor (TNF) modulates synaptic plasticity in a concentration-dependent manner through intracellular calcium stores. J Mol Med 96, 1039–1047 (2018). https://doi.org/10.1007/s00109-018-1674-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-018-1674-1

Keywords

Navigation