Skip to main content
Log in

Multiple sclerosis: an altered immune response or an altered stress response?

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The pathogenesis of multiple sclerosis (MS), the major neurological disease of young adults in the Western world, is still poorly understood, and no effective therapy to block MS is available as yet. The clinical symptoms of MS result from inflammatory damage to the insulating myelin sheath of axons in the CNS and — at later stages — to axons themselves. A local autoimmune process involving activation of helper T cells against CNS protein components is likely to be crucial in this development. Especially at the first stages of MS, therapies aimed at the selective downregulation of MS-specific autoimmune responses may contribute to controlling the disease. Key to the success of such approaches is the identification of CNS proteins that are the target of local T cell responses. We recently identified the small heat-shock protein αB-crystallin as the single immunodominant myelin antigen in MS-affected myelin. This review discusses the functional and therapeutic implications of this finding along with other data on MS, and hypothesizes that an inappropriate stress response within the CNS itself is crucial as an initiating event in disease development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

APC :

Antigen-presenting cells

BBB :

Blood-brain barrier

EAE :

Experimental allergic encephalomyelitis

HPLC :

High-performance liquid chromatography

HSP :

Heat-shock protein

IFN :

Interferon

IL :

Interleukin

MBP :

Myelin basic protein

MS :

Multiple sclerosis

TNF :

Tumor necrosis factor

References

  1. Ffrench-Constant C (1994) Pathogenesis of multiple sclerosis. Lancet 343:271–279

    Google Scholar 

  2. Ozawa K, Suchanek G, Breitschopf H, Brück W, Budka H, Jellinger K, Lassmann H (1994) Patterns of oligodendroglia pathology in multiple sclerosis. Brain 117:1311–1322

    Google Scholar 

  3. Canella B, Raine CS (1995) The adhesion molecule and cytokine profile of multiple sclerosis lesions. Ann Neurol 37:424–435

    Google Scholar 

  4. Gerritse K, Laman JD, Noelle RJ, Aruffo A, Ledbetter JA, Boersma WJA, Ciaassen E (1996) CD40-CD40-ligand interactions in experimental allergic encephalomyelitis and multiple sclerosis. Proc Natl Acad Sci USA (in press)

  5. Gerritse K, Deen C, Fasbender M, Ravid R, Boersma WJA, Ciaassen E (1994) The involvement of specific anti myelin basic protein antibody-forming cells in multiple sclerosis. J Neuroimmunol 49:153–159

    Google Scholar 

  6. Panitch HS (1994) Influence of infection on exacerbations of multiple slcerosis. Ann Neurol 36:S25-S28

    Google Scholar 

  7. Challoner PB, Smith KT, Parker KD, MacLeod DL, Coulter SN, Rose TM, Schultz ER, Lindsley Bennett J, Garber RL, Chang M, Schad PA, Stewart PM, Nowinsky RC, Brown JP, Burmer GC (1995) Plaque-associated expression of human herpesvirus 6 in multiple sclerosis. Proc Natl Acad Sci USA 92:7440–7444

    CAS  PubMed  Google Scholar 

  8. Spielman RS, Nathanson N (1982) The genetics of susceptibility to MS. Epidem Rev 4:45–65

    Google Scholar 

  9. Crusius JBA, Pena AS, van Oosten BW, Bioque G, Garcia A, Dijkstra CD, Polman CH (1995) Interleukin-1 receptor antagonist gene polymorphism and multiple sclerosis. Lancet 346:979–980

    Google Scholar 

  10. Waksman BH (1995) More genes versus environment. Nature 377:105–106

    Google Scholar 

  11. Martin R, MacFarland HF (1995) Immunological aspects of experimental autoimmune encephalomyelitis and multiple sclerosis. Crit Rev Clin Lab Sci 32:121–182

    Google Scholar 

  12. Ben-Nun A, Wekerle H, Cohen IR (1981) The rapid isolation of clonable antigen-specific T lymphocyte lines capable of mediating autoimmune encephalomyelitis. Eur J Immunol 11:195–199

    Google Scholar 

  13. Huitinga I, van Rooijen N, de Groot CJA, Uitdehaag BMJ, Dijkstra CD (1990) Suppression of experimental allergic encephalomyelitis in Lewis rats after elimination of macrophages. J Exp Med 172:1025–1031

    Google Scholar 

  14. Linington C, Bradi M, Lassmann H, Brunner C, Vass K (1988) Augmentation of demyelination in rat acute allergic encephalomyelitis by circulating mouse monoclonal antibodies directed against a myelin/oligodendrocyte glycoprotein. Am J Pathol 130:443–449

    Google Scholar 

  15. Van Noort JM, Nagelkerken AM, Boog CJP (1994) Immune intervention strategies in EAE. Int MS J 1:43–50

    Google Scholar 

  16. Fritz RB, Chou CH, McFarlin DE (1983) Relapsing murine experimental allergic encephalomyelitis induced by myelin basic protein. J Immunol 130:1024–1026

    Google Scholar 

  17. Kojima K, Berger T, Lassmann H, Hinze-Seich D, Zhang Y, Gehrmann J, Reske K, Wekerle H, Linington C (1994) Experimental autoimmune panencephalitis and uveoretinitis transferred to the Lewis rat by T lymphocytes specific for the S100ß molecule, a calcium binding protein of astroglia. J Exp Med 180:817–829

    Google Scholar 

  18. Mor F, Cohen IR (1995) Pathogenicity of T cells responsive to diverse cryptic epitopes of myelin basic protein in the Lewis rat. J Immunol 155:3693–3699

    Google Scholar 

  19. Pette M, Fujita K, Wilkinson D, Altmann DM, Trowsdale J, Giegerich G, Hinkkanen A, Epplen JT, Kappos L, Wekerle H (1990) Myelin autoreactivity in multiple slcerosis: recognition of myelin basic protein in the context of HLA-DR2 products by T lymphocytes of multiple sclerosis patients and healthy donors. Proc Natl Acad Sci USA 87:7968–7972

    Google Scholar 

  20. Scherer MT, Ignatowicz L, Winslow GM, Kappler JW, Marrack P (1993) Superantigens: bacterial and viral proteins that manipulate the immune system. Ann Rev Cell Biol 9:101–128

    Google Scholar 

  21. Damian RT (1964) Molecular mimicry: antigen sharing by parasite and host and its consequences. Am Nat 98:129–136

    Google Scholar 

  22. Fujinami RS, Oldstone MBA (1985) Amino acid homology between the encepgalitogenic site of myelin basic protein and virus: mechanism for autoimmunity. Science 230:1043–1045

    Google Scholar 

  23. Wucherpfennig KW, Strominger JL (1995) Molecular mimicry in T-cell mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell 80:695–705

    Google Scholar 

  24. Springer TA (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76:301–314

    Article  CAS  PubMed  Google Scholar 

  25. Herz L, McFarlin DE, Waksman BH (1990) Astrocytes: auxilliary cells for immune responses in the central nervous system? Immunol Today 11:265–269

    Google Scholar 

  26. Hartung H-P, Jung S, Stoll G, Zielasek J, Schmidt B, Archelos JJ, Toyka KV (1992) Inflammatory mediators in demyelinating disorders of the CNS and PNS. J Neuroimmunol 40:197–210

    Google Scholar 

  27. Cook DN, Beck MA, Coffman TM, Kirby SL, Sheridan JF, Pragnell, Smithies O (1995) Requirement of MIP-1α for an inflammatory response to viral infection. Science 269:1583–1585

    CAS  PubMed  Google Scholar 

  28. Van Noort JM, van Sechel AC, Bajramovic JJ, El Ouagmiri M, Polman CH, Lassmann H, Ravid R (1995) The small heat shock protein αB-crystallin as candidate autoantigen in multiple sclerosis. Nature 375:798–801

    Google Scholar 

  29. Van Noort JM, van Sechel AC, Boon, J, Boersma WJA, Polman CH, Lucas CJ (1993) Minor myelin proteins can be major targets for peripheral blood T cells from both multiple sclerosis patients and healthy subjects. J Neuroimmunol 46:67–72

    Google Scholar 

  30. Ingolia TD, Craig EA (1982) Four small heat shock proteins are related to each other and to mammalian α-crystallin. Proc Natl Acad Sci USA 79:2360–2364

    Google Scholar 

  31. Iwaki T, Kume-Iwaki A, Liem RKH, Goldman JE (1989) αB- Crystallin is expressed in nonlenticular tissues and accumulates in Alexander's disease brain. Cell 57:71–78

    Google Scholar 

  32. De Jong WW, Lubsen NH, Kraft HJ (1994) Molecular evolution of the eye lens. Progr Ret Eye Res 13:391–442

    Google Scholar 

  33. Nicholl ID, Quinlan RA (1994) Chaperone activity of α-crystallins modulate intermediate filament assembly. EMBO J 13:945–953

    Google Scholar 

  34. Head MW, Corbin E, Goldman JE (1994) Coordinate and independent regulation of αB-crystallin and HSP27 expression in response to physiological stress. J Cell Physiol 159:41–50

    Google Scholar 

  35. Müller DL, Jenkins MK, Schwartz RH (1989) Clonal expansion versus functional clonal inactivation: a costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Ann Rev Immunol 7:445–480

    Google Scholar 

  36. Cocks BG, Chang C-CJ, Carballido JM, Yssel H, de Vries JA, Aversa G (1995) A novel receptor involved in T-cell activation. Nature 376:260–263

    Google Scholar 

  37. Matzinger P (1994) Tolerance, danger and the extended family. Ann Rev Immunol 12:991–1045

    Google Scholar 

  38. Epstein MM, Di Rosa F, Jankovic D, Sher A, Matzinger P (1995) Successful T cell priming in B cell deficient mice. J Exp Med 182:915–922

    Google Scholar 

  39. Kawamura T, Furue M (1995) Comparative analysis of B7–1 and B7–2 expression in Langerhans cells: differential regulation by T-helper type 1 and type 2 cytokines. Eur J Immunol 25:1913–1917

    Google Scholar 

  40. McLellan AD, Starling GC, Williams LA, Hock BD, Hart DNJ (1995) Activation of human peripheral blood dendritic cells induce the CD86 (B7–2) co-stimulatory molecule. Eur J Immunol 25:2064–2068

    Google Scholar 

  41. De Simone R, Giampaolo A, Giometto B, Gallo P, Levi G, Peschile C, Aloisi F (1995) The costimulatory molecule B7 is expressed in human microglia in culture and in multiple sclerosis lesions. J Neuropathol Exp Neurol 54:175–187

    Google Scholar 

  42. Neumann H, Cavalié A, Jenne DE, Wekerle H (1995) Induction of MHC class I genes in neurons. Science 269:549–552

    Google Scholar 

  43. Samson MF, Smilek DE (1995) Reversal of acute experimental allergic encephalomyelitis and prevention of relapses by treatment with a myelin basic protein peptide analogue modified to form long-lived peptide-MHC complexes. J Immunol 155:2737–2746

    Google Scholar 

  44. Von Herrath MG, Guerder S, Lewicki H, Flavell RA, Oldstone MBA (1995) Coexpression of B7–1 and viral (“self”) transgenes in pancreatic β cells can break peripheral ignorance and lead to spontaneous autoimmune diabetes. Immunity 3:727–738

    Google Scholar 

  45. Van Eden W. (1991) Heat-shock proteins and the immune system. Immunol Rev 121:5–28

    Google Scholar 

  46. Michelson D, Stone L, Galliven E, Magiakou MA, Chrousos GP, Sternberg EM, Gold PW (1994) Multiple sclerosis is associated with alterations in hypothalamic-pituitary-adrenal axis function. J Clin Endocrinol Metabol 79:848–853

    Google Scholar 

  47. McRae BL, Vanderlugt CL, Dal Canto MC, Miller SD (1995) Functional evidence for epitope spreading in the relapsing pathology of experimental allergic encephalomyelitis. J Exp Med 182:75–85

    Google Scholar 

  48. De Graeff-Meeder ER, van Eden W, Rijkers GT, Prakken BJ, Kuis W, Voorhorst-Ogink MM, van der Zee R, Schuurman H-J, Helders PJM, Zegers BJM (1995) Juvenile chronic arthritis: T-cell reactivity to human HSP60 in patients with a favourable course of arthritis. J Clin Invest 95:934–940

    Google Scholar 

  49. Lee BS, Chen J, Angelidis C, Jurivich D, Morimoto RI (1995) Pharmacological modulation of heat-shock factor 1 by antiinflammatory drugs results in protection against stress-induced cellular damage. Proc Natl Acad Sci USA 92:7207–7211

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Noort, J.M. Multiple sclerosis: an altered immune response or an altered stress response?. J Mol Med 74, 285–296 (1996). https://doi.org/10.1007/BF00207506

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00207506

Key words

Navigation