Skip to main content
Log in

Plasma membrane hyperpolarization by cyanide in chromaffin cells: role of potassium channels

  • Original Investigations
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Exposure of rat pheochromocytoma (PC12) cells to cyanide produces elevation of cytosolic calcium, impaired Na+−H+ exchange, membrane lipid peroxidation and release of neurotransmitters. Since these observations suggested cyanide alters plasma membrane function, the present study examined the effect of NaCN on the membrane potential of undifferentiated PC12 cells in suspension. In PC12 cells loaded with the voltage sensitive fluorescent dye, bis-oxonol, cyanide (2.5–10 mM) elicited an immediate (within seconds), concentration related decrease in fluorescence, indicating hyperpolarization of the plasma membrane. Increasing extracellular K+ concentration to 20 mM blocked the effect of cyanide (5 mM), suggesting cyanide increased K+ efflux. Pretreatment with quinine blocked the cyanide-induced hyperpolarization, whereas glyburide had little effect, showing the hyperpolarization produced by cyanide was due to activation of Ca2+ sensitive K+ channels. Removal of Ca2+ from the media did not influence cyanide-induced hyperpolarization. However, buffering intracellular Ca2+ by loading cells with the Ca2+ chelators, Quin II or BAPTA, abolished the cyanide effect, showing cytosolic Ca2+ is a key factor. These findings suggest that cyanide mobilizes Ca2+ from intracellular stores which leads to hyperpolarization via the activation of Ca2+ sensitive K+ channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ardelt BK, Borowitz JL, Isom GE (1989) Brain lipid peroxidation and antioxidant defense mechanisms following acute cyanide intoxication. Toxicology 56: 147–154

    Article  PubMed  CAS  Google Scholar 

  • Armando-Hardy M, Ellory JC, Ferreira HG, Fleminger S, Lew VL, (1975) Inhibition of the calcium-induced increase in the potassium permeability of human red blood cells by quinine. J Physiol 250: 32P-33P

    PubMed  CAS  Google Scholar 

  • Auclair MC, Adolphe M, Moreno G, Salet C (1976) Comparison of the effects of potassium cyanide and hypoxia on ultrastructure and electrical activity of cultured rat myoblasts. Toxicol Appl Pharmacol 37: 387–399

    Article  PubMed  CAS  Google Scholar 

  • Duchen MR (1990) Effect of metabolic inhibition on the membrane properties of isolated mouse primary sensory neurons. J Physiol 424: 387–409

    PubMed  CAS  Google Scholar 

  • Duchen MR, Valdeonillos M, O'Neil SC, Eisner DA (1990) On the regulation of intracellular calcium in isolated mouse sensory neurons. J Physiol 424: 415–427

    Google Scholar 

  • Fugiwara N, Higashi H, Shimoji K, Yoshimura M (1987) Effects of hypoxia on rat hippocampal neurons in vitro. J Physiol 384: 131–151

    Google Scholar 

  • Godfraind JM, Kawamura H, Krnjevic K, Pumair R (1971) Actions of dinitrophenol and some other metabolic inhibitors on cortical neurons. J Physiol 215: 199–222

    PubMed  CAS  Google Scholar 

  • Hansen AJ, Hounsgaard J, Jahnsen H (1982) Anoxia increases potassium conductance in hippocampal nerve cells. Acta Physiol Scand 115: 301–310

    Article  PubMed  CAS  Google Scholar 

  • Isom GE, Way JL (1976) Lethality of cyanide in the absence of inhibition of liver cytochrome oxidase. Biochem Pharmacol 25: 605–608

    Article  PubMed  CAS  Google Scholar 

  • Johnson JD, Meisenheimer TH, Isom GE (1986) Cyanide-induced neurotoxicity: role of neuronal calcium. Toxicol Appl Pharmacol 84: 464–469

    Article  PubMed  CAS  Google Scholar 

  • Johnson JD, Conroy WG, Isom GE (1987) Alteration of cytosolic calcium levels in PC12 cells by potassium cyanide. Toxicol Appl Pharmacol 88: 217–224

    Article  PubMed  CAS  Google Scholar 

  • Keilin D (1930) Cytochrome and intracellular oxidase. Proc R Soc Lond B 106: 418–444

    Article  CAS  Google Scholar 

  • Kudo Y, Takeda K, Yamazaki K (1990) Quin 2 protects against neuronal cell death due to Ca2+ overload. Brain Res 528: 48–54

    Article  PubMed  CAS  Google Scholar 

  • Leblond J, Krnjevik K (1989) Hypoxic changes in hippocampal neurons. J Neurophysiol 62: 1–4

    PubMed  CAS  Google Scholar 

  • Maduh EJ, Borowitz JL, Isom GE (1990a) Cyanide-induced alteration of cytosolic pH: involvement of cellular hydrogen ion handling processes. Toxicol Appl Pharmacol 106: 201–208

    Article  PubMed  CAS  Google Scholar 

  • Maduh EJ, Borowitz JL, Turek JJ, Rebar A, Isom GE (1990b) Cyanide-induced neurotoxicity: calcium mediation of morphological changes in neuronal cells. Toxicol Appl Pharmacol 103: 214–221

    Article  PubMed  CAS  Google Scholar 

  • Maduh EU, Borowitz JL, Isom GE (1991) Cyanide-induced alteration of the adenylate energy pool in a rat neurosecretory cell line. J Appl Toxicol 11: 97–101

    Article  PubMed  CAS  Google Scholar 

  • Murphy KPSJ, Greenfield SA (1991) ATP-sensitive potassium channels counteract anoxia in neurons of the substania nigra. Exp Brain Res 84: 355–358

    Article  PubMed  CAS  Google Scholar 

  • Patel MN, Yim GKW, Isom GE (1992) Potentiation of cyanide neurotoxicity by blockade of ATP-sensitive potassium channels. Brain Res 593: 114–116

    Article  PubMed  CAS  Google Scholar 

  • Politi DM, Rogawski MA (1991) Glyburide-sensitive K+ channels in cultured rat hippocampal neurons: activation by chromakalim and energy-depleting conditions. Molecular Pharmacol 40: 308–319

    CAS  Google Scholar 

  • Quast U, Cook NS (1989) Moving together: K+ channel openers and ATP-sensitive K+ channels. Trends Pharmacol Sci 10: 431–435

    Article  PubMed  CAS  Google Scholar 

  • Reiner PB, Laycock AG, Doll CJ (1990) A pharmacological model of ischemia in the hippocampal slice. Neurosci Lett 119: 175–178

    Article  PubMed  CAS  Google Scholar 

  • Rink TJ, Montecucco C, Hesketh RR, Tsien RY (1980) Lymphocyte membrane potential assessed with fluorescent probes. Biochem Biophys Acta 595: 15–30

    Article  PubMed  CAS  Google Scholar 

  • Shafer TJ, Atchison WD (1991) Transmitter, ion channel and receptor properties of pheochromocytoma (PC12) cells: a model for neurotoxicological studies. Neurotoxicology 12: 473–492

    PubMed  CAS  Google Scholar 

  • Tsein R (1986) New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis and properties of prototype structures. Biochemistry 19: 2896–2404

    Google Scholar 

  • Valenzuela R, Court J, Godoy J (1992) Delayed cyanide induced dystonia. J Neurol Neurosurg Psychiatry 55: 198–199

    Article  PubMed  CAS  Google Scholar 

  • Wainscott DB, Borowitz JL, Isom GE (1990) Mobilization of intracellular calcium stores by potassium cyanide in PC12 cells. Pharmacologist 32: 161

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Latha, M.V., Borowitz, J.L., Yim, G.K.W. et al. Plasma membrane hyperpolarization by cyanide in chromaffin cells: role of potassium channels. Arch Toxicol 68, 370–374 (1994). https://doi.org/10.1007/s002040050084

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002040050084

Key words

Navigation