Skip to main content
Log in

Electrical and chemical stimulation of the basolateral complex of the amygdala reinstates cocaine-seeking behavior in the rat

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The basolateral complex of the amygdala (BLC) is part of a neural circuit that is activated in humans during cocaine craving elicited by exposure to drug-related environmental cues. In animals, the BLC is necessary for cocaine-seeking behavior elicited by cocaine-associated cues. It has not been determined whether BLC activation is sufficient to reinstate cocaine seeking.

Objectives

To determine whether electrical or excitatory amino-acid stimulation of the BLC is sufficient to induce reinstatement of cocaine seeking in rats.

Methods

Rats were catheterized and trained to lever-press for intravenous cocaine infusions on a fixed ratio (FR)-1 schedule of reinforcement. Once baseline cocaine-taking criteria were met, lever-pressing behavior was extinguished by substitution of saline for cocaine. After meeting criteria for extinction, animals were subjected to brief electrical (20 Hz, 400 μA or 2 Hz, 400 μA; 200 pulses per stimulation) or N-methyl-d-aspartate (NMDA; 250 ng/0.5 μl) BLC stimulation and lever pressing behavior was monitored.

Results

Electrical BLC stimulation with 20-Hz produced reinstatement of lever pressing previously associated with cocaine self-administration, while 2-Hz stimulation did not. Electrical stimulation of cerebellar and medial forebrain bundle loci did not reinstate cocaine seeking. Hence, the reinstatement was frequency dependent and anatomically selective. NMDA microinjections into the BLC also reinstated cocaine-seeking behavior.

Conclusions

BLC stimulation is sufficient to reinstate cocaine-seeking behavior in the rat. These results are congruent with the hypothesis that the basolateral complex of the amygdala is part of a neural system mediating drug-seeking behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1A–C.
Fig. 2 A,B.
Fig. 3 A,B.

Similar content being viewed by others

References

  • Altman J, Everitt BJ, Glautier S, Markou A, Nutt D, Oretti R, Phillips GD, Robbins TW (1996) The biological, social and clinical bases of drug addiction: commentary and debate. Psychopharmacology 125:285–345

    Article  CAS  PubMed  Google Scholar 

  • Bardo MT, Bevins RA (2000) Conditioned place preference: what does it add to our preclinical understanding of drug reward? Psychopharmacology 153:31–43

    Article  CAS  PubMed  Google Scholar 

  • Blaha CD, Yang CR, Floresco SB, Barr AM, Phillips AG (1997) Stimulation of the ventral subiculum of the hippocampus evokes glutamate receptor-mediated changes in dopamine efflux in the rat nucleus accumbens. Eur J Neurosci 9:902–911

    Article  CAS  PubMed  Google Scholar 

  • Brudzynski SM, Gibson CJ (1997) Release of dopamine in the nucleus accumbens caused by stimulation of the subiculum in freely moving rats. Brain Res Bull 42:303–308

    Article  CAS  PubMed  Google Scholar 

  • Childress AR, Mozley PD, McElgin W, Fitzgerald J, Reivich M, O'Brien CP (1999) Limbic activation during cue-induced cocaine craving. Am J Psychiatry 156:11–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coons EE, Levak M, Miller NE (1965) Lateral hypothalamus: learning of food-seeking response motivated by electrical stimulation. Science 150:1320–1321

    Article  CAS  PubMed  Google Scholar 

  • Cornish JL, Kalivas PW (2001) Cocaine sensitization and craving: differing roles for dopamine and glutamate in the nucleus accumbens. J Addict Dis 20:43–54

    Article  CAS  PubMed  Google Scholar 

  • Cornish JL, Duffy P, Kalivas PW (1999) A role for nucleus accumbens glutamate transmission in the relapse to cocaine-seeking behavior. Neuroscience 93:1359–1367

    Article  CAS  PubMed  Google Scholar 

  • Davis M (1992) The role of the amygdala in conditioned fear. In: Aggleton JP (ed) The amygdala: neurobiological aspects of emotion, memory, and mental dysfunction. Wiley–Liss, New York, pp 255–306

    Google Scholar 

  • de Wit H, Stewart J (1981) Reinstatement of cocaine-reinforced responding in the rat. Psychopharmacology 75:134–143

    Article  Google Scholar 

  • Di Chiara G (1998) A motivational learning hypothesis of the role of mesolimbic dopamine in compulsive drug use. J Psychopharmacol 12:54–67

    Article  Google Scholar 

  • Erb S, Shaham Y, Stewart J (1996) Stress reinstates cocaine-seeking behavior after prolonged extinction and a drug-free period. Psychopharmacology 128:408–412

    Article  CAS  PubMed  Google Scholar 

  • Everitt BJ, Robbins TW (1992) Amygdala–ventral striatal interaction and reward-related processes. In: Aggleton JP (ed) The amygdala: neurobiological aspects of emotion, memory, and mental dysfunction. Wiley–Liss, New York, pp 401–430

    Google Scholar 

  • Everitt BJ, Robbins TW (2000) Second-order schedules of drug reinforcement in rats and monkeys: measurement of reinforcing efficacy and drug-seeking behaviour. Psychopharmacology 153:17–30

    Article  CAS  PubMed  Google Scholar 

  • Everitt BJ, Cador M, Robbins TW (1989) Interactions between the amygdala and ventral striatum in stimulus–reward associations: studies using a second-order schedule of sexual reinforcement. Neuroscience 30:63–75

    Article  CAS  PubMed  Google Scholar 

  • Everitt BJ, Morris KA, O'Brien A, Robbins TW (1991) The basolateral amygdala–ventral striatal system and conditioned place preference: further evidence of limbic–striatal interactions underlying reward-related processes. Neuroscience 42:1–18

    Article  CAS  PubMed  Google Scholar 

  • Fiorino DF, Coury A, Fibiger HC, Phillips AG (1993) Electrical stimulation of reward sites in the ventral tegmental area increases dopamine transmission in the nucleus accumbens of the rat. Behav Brain Res 55:131–141

    Article  CAS  PubMed  Google Scholar 

  • Floresco SB, Yang CR, Phillips AG, Blaha CD (1998) Basolateral amygdala stimulation evokes glutamate receptor-dependent dopamine efflux in the nucleus accumbens of the anaesthetized rat. Eur J Neurosci 10:1241–1251

    Article  CAS  PubMed  Google Scholar 

  • Floresco SB, Todd CL, Grace AA (2001) Glutamatergic afferents from the hippocampus to the nucleus accumbens regulate activity of ventral tegmental area dopamine neurons. J Neurosci 21:4915–4922

    CAS  PubMed  Google Scholar 

  • Fuchs RA, Weber SM, Rice HJ, Neisewander JL (2002) Effects of excitotoxic lesions of the basolateral amygdala on cocaine-seeking behavior and cocaine conditioned place preference in rats. Brain Res 929:15–25

    Article  CAS  PubMed  Google Scholar 

  • Garavan H, Pankiewicz J, Bloom A, Cho JK, Sperry L, Ross TJ, Salmeron BJ, Risinger R, Kelley D, Stein EA (2000) Cue-induced cocaine craving: neuroanatomical specificity for drug users and drug stimuli. Am J Psychiatry 157:1789–1798

    Article  CAS  PubMed  Google Scholar 

  • Garris PA, Wightman RM (1994) Different kinetics govern dopaminergic transmission in the amygdala, prefrontal cortex, and striatum: an in vivo voltammetric study. J Neurosci 14:442–450

    CAS  PubMed  Google Scholar 

  • Garris PA, Kilpatrick M, Bunin MA, Michael D, Walker QD, Wightman RM (1999) Dissociation of dopamine release in the nucleus accumbens from intracranial self-stimulation. Nature 398:67–69

    Article  CAS  PubMed  Google Scholar 

  • Grant S, London ED, Newlin DB, Villemagne VL, Liu X, Contoreggi C, Phillips RL, Kimes AS, Margolin A (1996) Activation of memory circuits during cue-elicited cocaine craving. Proc Natl Acad Sci USA 93:12040–12045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimm JW, See RE (2000) Dissociation of primary and secondary reward-relevant limbic nuclei in an animal model of relapse. Neuropsychopharmacology 22:473–479

    Article  CAS  PubMed  Google Scholar 

  • Grimm JW, Hope BT, Wise RA, Shaham Y (2001) Neuroadaptation. Incubation of cocaine craving after withdrawal. Nature 412:141–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groenewegen HJ, Vermeulen–Van der Zee E, te Kortschot A, Witter MP (1987) Organization of the projections from the subiculum to the ventral striatum in the rat. A study using anterograde transport of Phaseolus vulgaris leucoagglutinin. Neuroscience 23:103–120

    Article  CAS  PubMed  Google Scholar 

  • Groenewegen HJ, Wright CI, Beijer AV (1996) The nucleus accumbens: gateway for limbic structures to reach the motor system? Prog Brain Res 107:485–511

    Article  CAS  PubMed  Google Scholar 

  • Hayes RJ, Vorel SR, Liu X, Spector J, Lachman H, Gardner EL (1999) Electrical stimulation of the basolateral amygdala reinstates cocaine seeking behavior. Soc Neurosci Abstr 25:599

    Google Scholar 

  • Hiroi N, White NM (1991) The lateral nucleus of the amygdala mediates expression of the amphetamine-produced conditioned place preference. J Neurosci 11:2107–2116

    CAS  PubMed  Google Scholar 

  • Howland JG, Taepavarapruk P, Phillips AG (2002) Glutamate receptor-dependent modulation of dopamine efflux in the nucleus accumbens by basolateral, but not central, nucleus of the amygdala in rats. J Neurosci 22:1137–1145

    CAS  PubMed  Google Scholar 

  • Jackson ME, Moghaddam B (2001) Amygdala regulation of nucleus accumbens dopamine output is governed by the prefrontal cortex. J Neurosci 21:676–681

    CAS  PubMed  Google Scholar 

  • Johnson LR, Aylward RL, Hussain Z, Totterdell S (1994) Input from the amygdala to the rat nucleus accumbens: its relationship with tyrosine hydroxylase immunoreactivity and identified neurons. Neuroscience 61:851–865

    Article  CAS  PubMed  Google Scholar 

  • Kane F, Coulombe D, Miliaressis E (1991) Amygdaloid self-stimulation: a movable electrode mapping study. Behav Neurosci 105:926–932

    Article  CAS  PubMed  Google Scholar 

  • Kantak KM, Black Y, Valencia E, Green–Jordan K, Eichenbaum HB (2002) Dissociable effects of lidocaine inactivation of the rostral and caudal basolateral amygdala on the maintenance and reinstatement of cocaine-seeking behavior in rats. J Neurosci 22:1126–1136

    CAS  PubMed  Google Scholar 

  • Kelley AE, Domesick VB (1982) The distribution of the projection from the hippocampal formation to the nucleus accumbens in the rat: an anterograde- and retrograde-horseradish peroxidase study. Neuroscience 7:2321–2335

    Article  CAS  PubMed  Google Scholar 

  • Kelley AE, Domesick VB, Nauta WJ (1982) The amygdalostriatal projection in the rat — an anatomical study by anterograde and retrograde tracing methods. Neuroscience 7:615–630

    Article  CAS  PubMed  Google Scholar 

  • Koob GF, Sanna PP, Bloom FE (1998) Neuroscience of addiction. Neuron 21:467–476

    Article  CAS  PubMed  Google Scholar 

  • LeDoux JE (1992) Brain mechanisms of emotion and emotional learning. Curr Opin Neurobiol 2:191–197

    Article  CAS  PubMed  Google Scholar 

  • Legault M, Rompré P–P, Wise RA (2000) Chemical stimulation of the ventral hippocampus elevates nucleus accumbens dopamine by activating dopaminergic neurons of the ventral tegmental area. J Neurosci 20:1635–1642

    CAS  PubMed  Google Scholar 

  • Leri F, Stewart J (2001) Drug-induced reinstatement to heroin and cocaine seeking: a rodent model of relapse in polydrug use. Exp Clin Psychopharmacol 9:297–306

    Article  CAS  PubMed  Google Scholar 

  • Maas LC, Lukas SE, Kaufman MJ, Weiss RD, Daniels SL, Rogers VW, Kukes TJ, Renshaw PF (1998) Functional magnetic resonance imaging of human brain activation during cue-induced cocaine craving. Am J Psychiatry 155:124–126

    Article  CAS  PubMed  Google Scholar 

  • Markou A, Weiss F, Gold LH, Caine SB, Schulteis G, Koob GF (1993) Animal models of drug craving. Psychopharmacology 112:163–182

    Article  CAS  PubMed  Google Scholar 

  • Meil WM, See RE (1997) Lesions of the basolateral amygdala abolish the ability of drug-associated cues to reinstate responding during withdrawal from self-administered cocaine. Behav Brain Res 87:139–148

    Article  CAS  PubMed  Google Scholar 

  • Mogenson GJ, Brudzynski SM, Wu M (1993) From motivation to action: a review of dopaminergic regulation of limbic–nucleus accumbens–ventral pallidum–pedunculopontine circuitries involved in limbic–motor integration. In: Kalivas PW, Barnes CD (eds) Limbic motor circuits and neuropsychiatry. CRC Press, Boca Raton, pp 193–236

  • Muramoto K, Ono T, Nishijo H, Fukuda M (1993) Rat amygdaloid neuron responses during auditory discrimination. Neuroscience 52:621–636

    Article  CAS  PubMed  Google Scholar 

  • O'Brien CP, Childress AR, McLellan AT, Ehrman R (1992) Classical conditioning in drug-dependent humans. Ann NY Acad Sci 654:400–415

    Article  PubMed  Google Scholar 

  • Ono T, Nishijo H, Uwano T (1995) Amygdala role in conditioned associative learning. Prog Neurobiol 46:401–422

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 4th edn. Academic Press, New York

  • Pratt WE, Mizumori SJ (1998) Characteristics of basolateral amygdala neuronal firing on a spatial memory task involving differential reward. Behav Neurosci 112:554–570

    Article  CAS  PubMed  Google Scholar 

  • Schultz W (2000) Multiple reward signals in the brain. Nat Rev Neurosci 1:199–207

    Article  CAS  PubMed  Google Scholar 

  • See RE (2002) Neural substrates of conditioned-cued relapse to drug-seeking behavior. Pharmacol Biochem Behav 71:517–529

    Article  CAS  PubMed  Google Scholar 

  • Self DW, Nestler EJ (1998) Relapse to drug-seeking: neural and molecular mechanisms. Drug Alcohol Depend 51:49–60

    Article  CAS  PubMed  Google Scholar 

  • Sesack SR, Pickel VM (1990) In the rat medial nucleus accumbens, hippocampal and catecholaminergic terminals converge on spiny neurons and are in apposition to each other. Brain Res 527:266–279

    Article  CAS  PubMed  Google Scholar 

  • Shaham Y, Erb S, Stewart J (2000) Stress-induced relapse to heroin and cocaine seeking in rats: a review. Brain Res Rev 33:13–33

    Article  CAS  PubMed  Google Scholar 

  • Shalev U, Grimm JW, Shaham Y (2002) Neurobiology of relapse to heroin and cocaine seeking: a review. Pharmacol Rev 54:1–42

    Article  CAS  PubMed  Google Scholar 

  • Solomon RL, Corbit JD (1974) An opponent-process theory of motivation. I. Temporal dynamics of affect. Psychol Rev 81:119–145

    Article  CAS  PubMed  Google Scholar 

  • Stewart J (1983) Conditioned and unconditioned drug effects in relapse to opiate and stimulant drug self-administration. Prog Neuropsychopharmacol Biol Psychiatry 7:591–597

    Article  CAS  PubMed  Google Scholar 

  • Stewart J (1984) Reinstatement of heroin and cocaine self-administration behavior in the rat by intracerebral application of morphine in the ventral tegmental area. Pharmacol Biochem Behav 20:917–923

    Article  CAS  PubMed  Google Scholar 

  • Stewart J (2000) Pathways to relapse: the neurobiology of drug- and stress-induced relapse to drug-taking. J Psychiatry Neurosci 25:125–136

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart J, Vezina P (1988) A comparison of the effects of intra-accumbens injections of amphetamine and morphine on reinstatement of heroin intravenous self-administration behavior. Brain Res 457:287–294

    Article  CAS  PubMed  Google Scholar 

  • Stretch R, Gerber GJ, Wood SM (1971) Factors affecting behavior maintained by response-contingent intravenous infusions of amphetamine in squirrel monkeys. Can J Physiol Pharmacol 49:581–589

    Article  CAS  PubMed  Google Scholar 

  • Taepavarapruk P, Phillips AG (2001) Reinstatement of d-amphetamine-seeking behavior during abstinence and extinction induced by high frequency stimulation of the ventral subiculum. Soc Neurosci Abstr 27:2337

    Google Scholar 

  • Tran-Nguyen LT, Fuchs RA, Coffey GP, Baker DA, O'Dell LE, Neisewander JL (1998) Time-dependent changes in cocaine-seeking behavior and extracellular dopamine levels in the amygdala during cocaine withdrawal. Neuropsychopharmacology 19:48–59

    Article  CAS  PubMed  Google Scholar 

  • Tzschentke TM (1998) Measuring reward with the conditioned place preference paradigm: a comprehensive review of drug effects, recent progress and new issues. Prog Neurobiol 56:613–672

    Article  CAS  PubMed  Google Scholar 

  • Vorel SR (2001) A neural circuit underlying cocaine-seeking behavior. Dissertation, Albert Einstein College of Medicine

  • Vorel SR, Liu X, Hayes RJ, Spector JA, Gardner EL (2001) Relapse to cocaine-seeking after hippocampal theta burst stimulation. Science 292:1175–1178

    Article  CAS  PubMed  Google Scholar 

  • Washton AM, Stone-Washton N (1990) Abstinence and relapse in outpatient cocaine addicts. J Psychoactive Drugs 22:135–147

    Article  CAS  PubMed  Google Scholar 

  • Weiss F, Maldonado-Vlaar CS, Parsons LH, Kerr TM, Smith DL, Ben Shahar O (2000) Control of cocaine-seeking behavior by drug-associated stimuli in rats: effects on recovery of extinguished operant-responding and extracellular dopamine levels in amygdala and nucleus accumbens. Proc Natl Acad Sci USA 97:4321–4326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss F, Martin-Fardon R, Ciccocioppo R, Kerr TM, Smith DL, Ben Shahar O (2001) Enduring resistance to extinction of cocaine-seeking behavior induced by drug-related cues. Neuropsychopharmacology 25:361–372

    Article  CAS  PubMed  Google Scholar 

  • Wise RA (1974) Lateral hypothalamic electrical stimulation: does it make animals 'hungry'? Brain Res 67:187–209

    Article  CAS  PubMed  Google Scholar 

  • Wise RA (1998) Drug-activation of brain reward pathways. Drug Alcohol Depend 51:13–22

    Article  CAS  PubMed  Google Scholar 

  • Wise RA, Bozarth MA (1984) Brain reward circuitry: four circuit elements "wired" in apparent series. Brain Res Bull 12:203–208

    Article  CAS  PubMed  Google Scholar 

  • Wright CI, Beijer AV, Groenewegen HJ (1996) Basal amygdaloid complex afferents to the rat nucleus accumbens are compartmentally organized. J Neurosci 16:1877–1893

    CAS  PubMed  Google Scholar 

  • Yavich L, MacDonald E (2000) Dopamine release from pharmacologically distinct storage pools in rat striatum following stimulation at frequency of neuronal bursting. Brain Res 870:73–79

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank William Paredes for technical support and George Alheid for helpful discussion of neuroanatomical issues. This work was supported by the Aaron Diamond Foundation; the Julia Sullivan Medical Research Fund; the Old Stones Foundation; the Chemistry and Medical Departments, Brookhaven National Laboratory; and the New York State Office of Alcoholism and Substance Abuse Services. Preparation of the manuscript was additionally supported by the Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health. Data in this paper are from a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Sue Golding Graduate Division of Medical Sciences, Albert Einstein College of Medicine, Yeshiva University. A preliminary report on parts of this work was presented previously in abstract form (Hayes et al. 1999).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliot L. Gardner.

Additional information

R.J. Hayes and S.R. Vorel contributed equally to the work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayes, R.J., Vorel, S.R., Spector, J. et al. Electrical and chemical stimulation of the basolateral complex of the amygdala reinstates cocaine-seeking behavior in the rat. Psychopharmacology 168, 75–83 (2003). https://doi.org/10.1007/s00213-002-1328-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-002-1328-3

Keywords

Navigation