Skip to main content

Advertisement

Log in

Corticosteroid-serotonin interactions in depression: a review of the human evidence

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

It has been suggested that corticosteroid-serotonin interactions are central to the pathophysiology of depression. These interactions have been investigated in healthy and depressed humans, primarily using neuroendocrine techniques.

Objectives

To review the evidence regarding the nature of these interactions in healthy and depressed humans.

Methods

Electronic searches were performed for relevant papers, employing MEDLINE and Web of Science. To focus the review, we selected only those articles involving (i) assessment of serotonergic function following experimental manipulation of the HPA axis in healthy volunteers; and (ii) assessment of both serotonergic and HPA axis function in clinically depressed subjects.

Results

Pre-treatment with hydrocortisone, both acutely and sub-acutely attenuates the GH response to GHRH in healthy subjects. This complicates the interpretation of 5-HT neuroendocrine studies employing GH output as a measure. In depression there is evidence that reduced availability of l-tryptophan impairs HPA axis feedback. There is also evidence that depressed and healthy subjects may adapt differently both to low tryptophan and hypercortisolaemic challenges. There is no consistent evidence of a simple relationship between HPA axis function and 5-HT function in depression.

Conclusions

The putative reduction in central 5-HT function has not been shown to be a direct consequence of hypercortisolaemia. Rather, the 5-HT system and HPA axis have complex inter-relationships. Challenges to either system, such as stress or reduced dietary tryptophan, may perturb the other and subjects vulnerable to depression may fail to adapt to such challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • American Psychiatric Association (1980) Diagnostic and statistical manual of mental disorders DSM-III, 3rd edn. American Psychiatric Association, Arlington, Va.

  • Amsterdam JD, Maislin G (1990) Comparison of growth hormone response after clonidine and insulin hypoglycemia in affective illness. Biol Psychiatry 28:308–314

    Google Scholar 

  • Anderson IM, Ware CJ, da Roza Davis JM, Cowen PJ (1992) Decreased 5-HT-mediated prolactin release in major depression. Br J Psychiatry 160:372–378

    CAS  PubMed  Google Scholar 

  • Badawy AA, Morgan CJ, Lovett JW, Bradley DM, Thomas R (1995) Decrease in circulating tryptophan availability to the brain after acute ethanol consumption by normal volunteers: implications for alcohol-induced aggressive behaviour and depression. Pharmacopsychiatry 28:93–97

    Google Scholar 

  • Barden N, Reul JM, Holsboer F (1995) Do antidepressants stabilize mood through actions on the hypothalamic-pituitary-adrenocortical system? Trends Neurosci 18:6–11

    CAS  PubMed  Google Scholar 

  • Barker WA, Scott J, Eccleston D (1987) The Newcastle chronic depression study: results of a treatment regime. Int Clin Psychopharmacol 2:261–272

    Article  CAS  PubMed  Google Scholar 

  • Bhagwagar Z, Hafizi S, Cowen PJ (2002a) Cortisol modulation of 5-HT-mediated growth hormone release in recovered depressed patients. J Affect Disord 72:249–255

    Article  CAS  PubMed  Google Scholar 

  • Bhagwagar Z, Whale R, Cowen PJ (2002b) State and trait abnormalities in serotonin function in major depression. Br J Psychiatry 180:24–28

    PubMed  Google Scholar 

  • Birmaher B, Dahl RE, Williamson DE, Perel JM, Brent DA, Axelson DA, Kaufman J, Dorn LD, Stull S, Rao U, Ryan ND (2000) Growth hormone secretion in children and adolescents at high risk for major depressive disorder. Arch Gen Psychiatry 57:867–872

    Article  CAS  PubMed  Google Scholar 

  • Birmaher B, Dahl RE, Ryan ND, Williamson DE (2002) The role of hypothalamic-pituitary-adrenal axis dysfunction in the attenuated growth hormone response in adolescents with familial loading for affective disorder: in reply. Arch Gen Psychiatry 59:187

    Google Scholar 

  • Blier P, Seletti B, Gilbert F, Young SN, Benkelfat C (2002) Serotonin 1A receptor activation and hypothermia in humans: Lack of evidence for a presynaptic mediation. Neuropsychopharmacology 27:301–308

    Article  CAS  PubMed  Google Scholar 

  • Budziszewska B, Siwanowicz J, Przegaliski E (1995) Role of the serotoninergic system in the regulation of glucocorticoid and mineralocorticoid receptors in the rat hippocampus. Pol J Pharmacol 47:299–304

    CAS  PubMed  Google Scholar 

  • Burguera B, Muruais C, Penalva A, Dieguez C, Casanueva FF (1990) Dual and selective actions of glucocorticoids upon basal and stimulated growth hormone release in man. Neuroendocrinology 51:51–58

    CAS  PubMed  Google Scholar 

  • Casanueva FF, Burguera B, Tome MA, Lima L, Tresguerres JA, Devesa J, Dieguez C (1988) Depending on the time of administration, dexamethasone potentiates or blocks growth hormone-releasing hormone-induced growth hormone release in man. Neuroendocrinology 47:46–49

    CAS  PubMed  Google Scholar 

  • Caufriez A, Desir D, Szyper M, Robyn C, Copinschi G (1981) Prolactin secretion in Cushing’s disease. J Clin Endocrinol Metab 53:843–846

    CAS  PubMed  Google Scholar 

  • Chaouloff F (1993) Physiopharmacological interactions between stress hormones and central serotonergic systems. Brain Res Brain Res Rev 18:1–32

    Article  CAS  PubMed  Google Scholar 

  • Chaouloff F (2000) Serotonin, stress and corticoids. J Psychopharmacol 14:139–151

    CAS  PubMed  Google Scholar 

  • Charney DS, Heninger GR (1982) The effect of IV l-tryptophan on prolactin, growth hormone, and mood in healthy subjects. Psychopharmacology 78:38–43

    CAS  PubMed  Google Scholar 

  • Chernow B, Alexander HR, Smallridge RC, Thompson WR, Cook D, Beardsley D, Fink MP, Lake CR, Fletcher JR (1987) Hormonal responses to graded surgical stress. Arch Int Med 147:1273–1278

    Article  CAS  Google Scholar 

  • Cleare AJ, Murray RM, O’Keane V (1996) Reduced prolactin and cortisol responses to d-fenfluramine in depressed compared to healthy matched control subjects. Neuropsychopharmacology 14:349–354

    Article  CAS  PubMed  Google Scholar 

  • Coccaro EF, Kavoussi RJ, Cooper TB, Hauger R (1996a) 5-HT3 receptor antagonism by ondansetron does not attenuate prolactin response to d-fenfluramine challenge in healthy human subjects. Psychopharmacology 127:108–112

    CAS  PubMed  Google Scholar 

  • Coccaro EF, Kavoussi RJ, Oakes M, Cooper TB, Hauger R (1996b) 5-HT2A/2C receptor blockade by amesergide fully attenuates prolactin response to d-fenfluramine challenge in physically healthy human subjects. Psychopharmacology 126:24–30

    CAS  PubMed  Google Scholar 

  • Coccaro EF, Kavoussi RJ, Cooper TB, Hauger R (1998) Acute tryptophan depletion attenuates the prolactin response to d-fenfluramine challenge in healthy human subjects. Psychopharmacology 138:9–15

    Google Scholar 

  • Cowen PJ (1996) The serotonin hypothesis: necessary but not sufficient. In: Feighner J, Boyer W (eds) Selective serotonin reuptake inhibitors. Wiley, Chichester, pp 63–86

  • Cowen PJ, Charig EM (1987) Neuroendocrine responses to intravenous tryptophan in major depression. Arch Gen Psychiatry 44:958–66

    CAS  PubMed  Google Scholar 

  • Da Roza Davis JM, Cowen PJ (2001) Biochemical stress of caring. Psychol Med 31:1475–1478

    PubMed  Google Scholar 

  • Dannies PS, Tashjian AR Jr (1973) Effects of thyrotropin-releasing hormone and hydrocortisone on synthesis and degradation of prolactin in a rat pituitary cell strain. J Biol Chem 248:6174–9

    CAS  PubMed  Google Scholar 

  • de Kloet ER, Sybesma H, Reul HM (1986) Selective control by corticosterone of serotonin1 receptor capacity in raphé-hippocampal system. Neuroendocrinology 42:513–521

    PubMed  Google Scholar 

  • Deakin JF, Pennell I, Upadhyaya AJ, Lofthouse R (1990) A neuroendocrine study of 5HT function in depression: evidence for biological mechanisms of endogenous and psychosocial causation. Psychopharmacology 101: 85–92

    CAS  PubMed  Google Scholar 

  • Deuschle M, Schweiger U, Weber B, Gotthardt U, Korner A, Schmider J, Standhardt H, Lammers CH, Heuser I (1997) Diurnal activity and pulsatility of the hypothalamus-pituitary-adrenal system in male depressed patients and healthy controls. J Clin Endocrinol Metab 82:234–238

    CAS  PubMed  Google Scholar 

  • Dinan TG (1994) Glucocorticoids and the genesis of depressive illness. A psychobiological model Br J Psychiatry 164:365–371

    CAS  Google Scholar 

  • Dinan TG, Scott LV (1996) The influence of cortisol on spontaneous and 5HT stimulated prolactin release in man. J Basic Clin Physiol Pharmacol 7:45–56

    CAS  PubMed  Google Scholar 

  • Dinan TG, Thakore J, V OK (1994) Lowering cortisol enhances growth hormone response to growth hormone releasing hormone in healthy subjects. Acta Physiol Scand 151:413–416

    CAS  PubMed  Google Scholar 

  • Dinan TG, Scott LV, Thakore J, Naesdal J, Keeling PW (2001) Impact of cortisol on buspirone stimulated prolactin release: a double-blind placebo-controlled study. Psychoneuroendocrinology 26:751–756

    CAS  PubMed  Google Scholar 

  • Dolan RJ, Calloway SP (1986) The human growth hormone response to clonidine: relationship to clinical and neuroendocrine profile in depression. Am J Psychiatry 143:772–774

    CAS  PubMed  Google Scholar 

  • Drevets WC, Frank E, Price JC, Kupfer DJ, Holt D, Greer PJ, Huang Y, Gautier C, Mathis C (1999) PET imaging of serotonin 1A receptor binding in depression. Biol Psychiatry 46:1375–1387

    CAS  PubMed  Google Scholar 

  • Duman RS, Heninger GR, Nestler EJ (1997) A molecular and cellular theory of depression. Arch Gen Psychiatry 54:597–606

    CAS  PubMed  Google Scholar 

  • Duval F, Mokrani MC, Correa H, Bailey P, Valdebenito M, Monreal J, Crocq MA, Macher JP (2001) Lack of effect of HPA axis hyperactivity on hormonal responses to d-fenfluramine in major depressed patients: implications for pathogenesis of suicidal behaviour. Psychoneuroendocrinology 26:521–537

    Article  CAS  PubMed  Google Scholar 

  • Fairchild GF, Massey AE, Hsu FC, McAllister-Williams RH (2003) Repeated cortisol administration attenuates 5HT1A autoreceptor function in humans. J Psychopharmacol 17:A76

    Google Scholar 

  • Frantz AG, Rabkin JG (1964) Clinical Measurement, response to hypoglycaemia and suppression by corticosteroids. N Engl J Med 271:1375–1381

    CAS  Google Scholar 

  • Fuller RW (1992) The involvement of serotonin in regulation of pituitary-adrenocortical function. Front Neuroendocrinol 13:250–270

    CAS  PubMed  Google Scholar 

  • Fuxe K, Butcher LL, Engel J (1971) dl-5-Hydroxytryptophan-induced changes in central monoamine neurons after peripheral decarboxylase inhibition. J Pharm Pharmacol 23:420–424

    CAS  PubMed  Google Scholar 

  • Giustina A, Romanelli G, Candrina R, Giustina G (1989) Growth hormone deficiency in patients with idiopathic adrenocorticotropin deficiency resolves during glucocorticoid replacement. J Clin Endocrinol Metab 68:120–124

    CAS  PubMed  Google Scholar 

  • Giustina A, Doga M, Bodini C, Girelli A, Legati F, Bossoni S, Romanelli G (1990) Acute effects of cortisone acetate on growth hormone response to growth hormone-releasing hormone in normal adult subjects. Acta Endocrinol 122:206–210

    CAS  PubMed  Google Scholar 

  • Gold PW, Loriaux DL, Roy A, Kling MA, Calabrese JR, Kellner CH, Nieman LK, Post RM, Pickar D, Gallucci W (1986) Responses to corticotropin-releasing hormone in the hypercortisolism of depression and Cushing’s disease. Pathophysiologic and diagnostic implications. N Engl J Med 314:1329–1335

    CAS  PubMed  Google Scholar 

  • Golden RN, Ruegg R, Brown TM, Haggerty J, Jr., Garbutt JC, Pedersen CA, Evans DL (1990) Abnormal neuroendocrine responsivity to clomipramine in depression. Psychopharmacol Bull 26:317–320

    CAS  PubMed  Google Scholar 

  • Goodall EM, Cowen PJ, Franklin M, Silverstone T (1993) Ritanserin attenuates anorectic, endocrine and thermic responses to d-fenfluramine in human volunteers. Psychopharmacology 112:461–466

    CAS  PubMed  Google Scholar 

  • Greden JF, Gardner R, King D, Grunhaus L, Carroll BJ, Kronfol Z (1983) Dexamethasone suppression tests in antidepressant treatment of melancholia. The process of normalization and test-retest reproducibility. Arch Gen Psychiatry 40:493–500

    Google Scholar 

  • Gregory CA, Anderson IM, Cowen PJ (1990) Metergoline abolishes the prolactin response to buspirone. Psychopharmacology 100:283–284

    CAS  PubMed  Google Scholar 

  • Guazzo EP, Kirkpatrick PJ, Goodyer IM, Shiers HM, Herbert J (1996) Cortisol, dehydroepiandrosterone (DHEA), and DHEA sulfate in the cerebrospinal fluid of man: relation to blood levels and the effects of age. J Clin Endocrinol Metab 81:3951–3960

    CAS  PubMed  Google Scholar 

  • Harmer CJ, Bhagwagar Z, Shelley N, Cowen PJ (2003) Contrasting effects of citalopram and reboxetine on waking salivary cortisol. Psychopharmacology 167:112–114

    CAS  PubMed  Google Scholar 

  • Heninger GR, Charney DS, Price L, Delgado P, Woods S, Goodman W (1990) Neuroendocrine effects of serotonin agonists in rhesus monkeys, healthy humans and patients with depression or anxiety disorders: effects of anti-depressant treatment. In: Paoletti R, Vanhoutte PM, Brunello N, Maggi FM (eds) Serotonin: cell biology to pharmacology and therapeutics. Kluwer Acadmic, Dordrecht, pp 559–563

  • Hesselmann B, Neumeister A, Praschak-Rieder N, Vitouch O, Kasper S (1997) Cortisol concentration during tryptophan depletion in depressed and remitted patients with seasonal affective disorder (SAD) 6th World Congress of Biological Psychiatry, Nice, pp 39–123

  • Heuser I, Yassouridis A, Holsboer F (1994) The combined dexamethasone/CRH test: a refined laboratory test for psychiatric disorders. J Psychiatr Res 28:341–356

    Article  CAS  PubMed  Google Scholar 

  • Heuser IJ, Schweiger U, Gotthardt U, Schmider J, Lammers CH, Dettling M, Yassouridis A, Holsboer F (1996) Pituitary-adrenal-system regulation and psychopathology during amitriptyline treatment in elderly depressed patients and normal comparison subjects. Am J Psychiatry 153:93–99

    CAS  PubMed  Google Scholar 

  • Hirota T, Hirota K, Sanno Y, Tanaka T (1985) A new glucocorticoid receptor species: relation to induction of tryptophan dioxygenase by glucocorticoids. Endocrinology 117:1788–1795

    CAS  PubMed  Google Scholar 

  • Holsboer F, Barden N (1996) Antidepressants and hypothalamic-pituitary-adrenocortical regulation. Endocrine Rev 17:187–205

    Article  CAS  Google Scholar 

  • Holsboer F, Von Bardeleben U, Gerken A, Stalla GK, Muller OA (1984) Blunted corticotropin and normal cortisol response to human corticotropin-releasing factor in depression. N Engl J Med 311:1127

    CAS  Google Scholar 

  • Holsboer F, Lauer CJ, Schreiber W, Krieg JC (1995) Altered hypothalamic-pituitary-adrenocortical regulation in healthy subjects at high familial risk for affective disorders. Neuroendocrinology 62:340–347

    Google Scholar 

  • Holsboer-Trachsler E, Stohler R, Hatzinger M (1991) Repeated administration of the combined dexamethasone-human corticotropin releasing hormone stimulation test during treatment of depression. Psychiatry Res 38:163–171

    Article  CAS  PubMed  Google Scholar 

  • Inder WJ, Prickett TC, Mulder RT, Donald RA, Joyce PR (2001) Reduction in basal afternoon plasma ACTH during early treatment of depression with fluoxetine. Psychopharmacology 156:73–78

    Google Scholar 

  • Invernizzi R, Berettera C, Garattini S, Samanin R (1986) d- and l-isomers of fenfluramine differ markedly in their interaction with brain serotonin and catecholamines in the rat. Eur J Pharmacol 120:9–15

    CAS  PubMed  Google Scholar 

  • Joseph MH, Kennett GA (1983) Corticosteroid response to stress depends upon increased tryptophan availability. Psychopharmacology 79:79–81

    CAS  PubMed  Google Scholar 

  • Kahn RS, Wetzler S, Asnis GM, Papolos D, Van Praag HM (1990) Serotonin receptor sensitivity in major depression. Biol Psychiatry 28:358–362

    Article  CAS  PubMed  Google Scholar 

  • Kasuya Y, Iwano M, Shibasaki H, Furuta T (1995) Pharmacokinetic studies of cortisol after oral administration of deuterium-labelled cortisol to a normal human subject. Rapid Commun Mass Spectrom Spec No: S29–34

    Google Scholar 

  • Kathol RG, Jaeckle R, Wysham C, Sherman B (1991) Imipramine effect on the hypothalamic-pituitary-adrenal axis response to hypoglycemia. Psychiatry Res 41:2–52

    Google Scholar 

  • Koyama T, Meltzer H (1986) A biochemical and neuroendocrine study of the serotonergic system in depression. In: Hippius H et al. (eds) New results in depression research. Springer, Berlin, Heidelberg, New York, pp 169–188

  • Kuroda Y, Watanabe Y, Albeck DS, Hastings NB, McEwen BS (1994) Effects of adrenalectomy and type I or type II glucocorticoid receptor activation on 5-HT1A and 5-HT2 receptor binding and 5-HT transporter mRNA expression in rat brain. Brain Res 648:157–61

    CAS  PubMed  Google Scholar 

  • Laakmann G (1990) Psychopharmacoendocrinology and depression research. Springer-Verlag, Berlin, Heidelberg, New York

  • Leitch MM, Ingram CD, Young AH, McQuade R, Gartside SE (2003) Flattening the corticosterone rhythm attenuates 5HT1A autoreceptor function in the rat: relevance for depression. Neuropsychopharmacology 28:119–125

    Article  CAS  PubMed  Google Scholar 

  • Lesch KP, Muller U, Rupprecht R, Kruse K, Schulte HM (1989a) Endocrine responses to growth hormone-releasing hormone, thyrotropin-releasing hormone and corticotropin-releasing hormone in depression. Acta Psychiatr Scand 79:597–602

    CAS  PubMed  Google Scholar 

  • Lesch KP, Rupprecht R, Poten B, Muller U, Sohnle K, Fritze J, Schulte HM (1989b) Endocrine responses to 5-hydroxytryptamine-1A receptor activation by ipsapirone in humans. Biol Psychiatry 26:203–205

    CAS  PubMed  Google Scholar 

  • Lesch KP, Disselkamp-Tietze J, Schmidtke A (1990) 5-HT1A receptor function in depression: effect of chronic amitriptyline treatment. J Neural Transm [Gen Sect] 80:157–161

    Google Scholar 

  • Maes M, Meltzer HY (1995) The serotonin hypothesis of major depression. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: the fourth generation of progress. Raven Press, New York, pp 933–944

  • Maes M, De Ruyter M, Claes R, Bosma G, Suy E (1987a) The cortisol responses to 5-hydroxytryptophan, orally, in depressive inpatients. J Affect Disord 13:23–30

    Article  CAS  PubMed  Google Scholar 

  • Maes M, De Ruyter M, Hobin P, Suy E (1987b) Relationship between the dexamethasone suppression test and the l-tryptophan/competing amino acids ratio in depression. Psychiatry Res 21:323–335

    Article  CAS  PubMed  Google Scholar 

  • Maes M, De Ruyter M, Claes R, Suy E (1988) Sex-related differences in the relationships between self-rated depression and biological markers. J Affect Disord 15:119–25

    Article  CAS  PubMed  Google Scholar 

  • Maes M, Jacobs MP, Suy E, Minner B, Leclercq C, Christiaens F, Raus J (1990a) Suppressant effects of dexamethasone on the availability of plasma l-tryptophan and tyrosine in healthy controls and in depressed patients. Acta Psychiatr Scand 81:19–23

    CAS  PubMed  Google Scholar 

  • Maes M, Schotte C, Scharpe S, Martin M, Blockx P (1990b) The effects of glucocorticoids on the availability of l-tryptophan and tyrosine in the plasma of depressed patients. J Affect Disord 18:121–127

    Article  CAS  PubMed  Google Scholar 

  • Maes M, Vandewoude M, Schotte C, Maes L, Martin M, Scharpe S, Blockx P (1990c) The relationships between the cortisol responses to dexamethasone and to l-5-HTP, and the availability of l-tryptophan in depressed females. Biol Psychiatry 27:601–608

    Article  CAS  PubMed  Google Scholar 

  • Maes M, D’Hondt P, Martin M, Claes M, Schotte C, Vandewoude M, Blockx P (1991a) l-5-Hydroxytryptophan stimulated cortisol escape from dexamethasone suppression in melancholic patients. Acta Psychiatr Scand 83:302–306

    CAS  PubMed  Google Scholar 

  • Maes M, D’Hondt P, Suy E, Minner B, Vandervorst C, Raus J (1991b) HPA-axis hormones and prolactin responses to dextro-fenfluramine in depressed patients and healthy controls. Prog Neuropsychopharmacol Biol Psychiatry 15:781–790

    CAS  PubMed  Google Scholar 

  • Maes M, Meltzer HY, P DH, Cosyns P, Blockx P (1995) Effects of serotonin precursors on the negative feedback effects of glucocorticoids on hypothalamic-pituitary-adrenal axis function in depression. Psychoneuroendocrinology 20:149–167

    Article  CAS  PubMed  Google Scholar 

  • Mahmood I, Sahajwalla C (1999) Clinical pharmacokinetics and pharmacodynamics of buspirone, an anxiolytic drug. Clin Pharmacokinet 36:277–287

    CAS  PubMed  Google Scholar 

  • Martire M, Pistritto G, Preziosi P (1989) Different regulation of serotonin receptors following adrenal hormone imbalance in the rat hippocampus and hypothalamus. J Neural Transm 78:109–120

    CAS  PubMed  Google Scholar 

  • Matussek N, Ackenheil M, Hippius H, Muller F, Schroder HT, Schultes H, Wasilewski B (1980) Effect of clonidine on growth hormone release in psychiatric patients and controls. Psychiatry Res 2:25–36

    CAS  PubMed  Google Scholar 

  • McAllister-Williams RH, Massey AE (2003) EEG effects of buspirone and pindolol: a method of examining 5-HT1A receptor function in humans. Psychopharmacology 166:284–293

    CAS  PubMed  Google Scholar 

  • McAllister-Williams RH, Ferrier IN, Young AH (1998) Mood and neuropsychological function in depression: the role of corticosteroids and serotonin. Psychol Med 28:573–584

    CAS  PubMed  Google Scholar 

  • McCance SL, Cowen PJ, Waller H, Grahame-Smith DG (1987) The effects of metergoline on endocrine responses to l-tryptophan. J Psychopharmacol 2:90–94

    Google Scholar 

  • McTavish SFB, McPherson MH, Harmer CJ, Clark L, Sharp T, Goodwin GM, Cowen PJ (2001) Antidopaminergic effects of dietary tyrosine depletion in healthy subjects and patients with manic illness. Br J Psychiatry 179:356–360

    CAS  PubMed  Google Scholar 

  • Meijer OC, de Kloet ER (1994) Corticosterone suppresses the expression of 5-HT1A receptor mRNA in rat dentate gyrus. Eur J Pharmacol 266:255–261

    CAS  PubMed  Google Scholar 

  • Meijer OC, de Lange EC, Breimer DD, de Boer AG, Workel JO, de Kloet ER (1998) Penetration of dexamethasone into brain glucocorticoid targets is enhanced in mdr1A P-glycoprotein knockout mice. Endocrinology 139:1789–1793

    CAS  PubMed  Google Scholar 

  • Meltzer HY, Maes M (1994) Effect of pindolol on the l-5-HTP-induced increase in plasma prolactin and cortisol concentrations in man. Psychopharmacology 114:635–643

    CAS  PubMed  Google Scholar 

  • Meltzer HY, Maes M (1995) Effects of ipsapirone on plasma cortisol and body temperature in major depression. Biol Psychiatry 38:450–457

    CAS  PubMed  Google Scholar 

  • Meltzer HY, Umberkoman-Wiita B, Robertson A, Tricou BJ, Lowy M, Perline R (1984) Effect of 5-hydroxytryptophan on serum cortisol levels in major affective disorders. I. Enhanced response in depression and mania. Arch Gen Psychiatry 41:366–374

    CAS  PubMed  Google Scholar 

  • Meltzer HY, Hong Shick L, Nash Jr JF, Coccaro EF, Gabriel S, Mahon T, Macaluso J, Siever LJ (1992) Effect of buspirone on prolactin secretion is not mediated by 5-HT1A receptor stimulation. Arch Gen Psychiatry 49:163–164

    CAS  PubMed  Google Scholar 

  • Mendelson SD, McEwen BS (1992a) Autoradiographic analyses of the effects of adrenalectomy and corticosterone on 5-HT1A and 5-HT1B receptors in the dorsal hippocampus and cortex of the rat. Neuroendocrinology 55:444–450

    CAS  PubMed  Google Scholar 

  • Mendelson SD, McEwen BS (1992b) Quantitative autoradiographic analyses of the time course and reversibility of corticosterone-induced decreases in binding at 5-HT1A receptors in rat forebrain. Neuroendocrinology 56:881–888

    CAS  PubMed  Google Scholar 

  • Michelson D, Galliven E, Hill L, Demitrack M, Chrousos G, Gold P (1997) Chronic imipramine is associated with diminished hypothalamic-pituitary-adrenal axis responsivity in healthy humans. J Clin Endocrinol Metab 82:2601–2606

    CAS  PubMed  Google Scholar 

  • Miller HE, Deakin JF, Anderson IM (2000) Effect of acute tryptophan depletion on CO2-induced anxiety in patients with panic disorder and normal volunteers. Br J Psychiatry 176:182–188

    CAS  PubMed  Google Scholar 

  • Mitchell P, Smythe G (1990) Hormonal responses to fenfluramine in depressed and control subjects. J Affect Disord 19:43–51

    Article  CAS  PubMed  Google Scholar 

  • Mokrani MC, Duval F, Crocq MA, Bailey P, Macher JP (1997) HPA axis dysfunction in depression: correlation with monoamine system abnormalities. Psychoneuroendocrinology 22: S63–S68

    Article  CAS  PubMed  Google Scholar 

  • Montgomery AJ, Bench CJ, Young AH, Hammers A, Gunn RN, Bhagwagar Z, Grasby PM (2001) PET measurement of the influence of corticosteroids on serotonin-1A receptor number. Biol Psychiatry 50:668–676

    CAS  PubMed  Google Scholar 

  • Mulder RT, Porter RJ, Joyce PR (2003) The prolactin response to fenfluramine in depression—the effects of melancholia and baseline cortisol. J Psychopharmacol 17:97–102

    Article  CAS  PubMed  Google Scholar 

  • Nemeroff CB (1996) The corticotropin-releasing factor (CRF) hypothesis of depression: new findings and new directions. Mol Psychiatry 1:336–342

    CAS  PubMed  Google Scholar 

  • Newcomer JW, Selke G, Melson AK, Hershey T, Craft S, Richards K, Alderson AL (1999) Decreased memory performance in healthy humans induced by stress level cortisol treatment. Arch Gen Psychiatry 56:527–533

    Article  CAS  PubMed  Google Scholar 

  • Newman M, Shapira B, Lerer B (1998) Evaluation of central serotonergic function in affective and related disorders by the fenfluramine challenge test : a critical review. Int J Neuropsychopharmacol 1:49–69

    Google Scholar 

  • Nuller JL, Ostroumova MN (1980) Resistance to inhibiting effect of dexamethasone in patients with endogenous depression. Acta Psychiatr Scand 61:169–177

    CAS  PubMed  Google Scholar 

  • Park SB, Williamson DJ, Cowen PJ (1996) 5-HT neuroendocrine function in major depression: prolactin and cortisol responses to d-fenfluramine. Psychol Med 26:1191–1196

    CAS  PubMed  Google Scholar 

  • Peroutka SJ (1988) 5-Hydroxytryptamine receptor subtypes. Annu Rev Neurosci 11:45–60

    Article  CAS  PubMed  Google Scholar 

  • Pichot W, Herrera C, Ansseau M (2001) HPA axis dysfunction in major depression: relationship to 5-HT1A receptor activity. Neuropsychobiology 44:74–77

    CAS  PubMed  Google Scholar 

  • Porter RJ, McAllister-Williams RH, Lunn BS, Young AH (1998) 5-Hydroxytryptamine receptor function in man is reduced by acute administration of hydrocortisone. Psychopharmacology 139:243–250

    CAS  PubMed  Google Scholar 

  • Porter RJ, McAllister-Williams RH, Jones S, Young AH (1999) Effects of dexamethasone on neuroendocrine and psychological responses to l-tryptophan infusion. Psychopharmacology 143:64–71

    CAS  PubMed  Google Scholar 

  • Porter RJ, Gallagher P, Watson S, Lunn B, Young AH (2002a) The effects of sub-chronic administration of hydrocortisone on hormonal and psychological responses to l-tryptophan in normal male volunteers. Psychopharmacology 163:68–75

    Article  CAS  PubMed  Google Scholar 

  • Porter RJ, Marshall EF, O”Brien JT (2002b) Effects of rapid tryptophan depletion on salivary and plasma cortisol in Alzheimer”s disease and the healthy elderly. J Psychopharmacol 16:73–78

    CAS  PubMed  Google Scholar 

  • Porter RJ, Gallagher P, Watson S, Smith MS, Young AH (2003) Elevated prolactin responses to l-tryptophan infusion in medication-free depressed patients. Psychopharmacology 169: 77–83

    Article  CAS  PubMed  Google Scholar 

  • Power AC, Cowen PJ (1992) Neuroendocrine challenge tests: assessment of 5-HT function in anxiety and depression. Mol Aspects Med 13:205–20

    CAS  PubMed  Google Scholar 

  • Price LH, Charney DS, Delgado PL, Heninger GR (1991) Serotonin function and depression: neuroendocrine and mood responses to intravenous l-tryptophan in depressed patients and healthy comparison subjects. Am J Psychiatry 148:1518–1525

    CAS  PubMed  Google Scholar 

  • Price LH, Cappiello A, Malison RT, McDougle CJ, Pelton GH, Schollnhammer G, Heninger GR (1997a) Effects of antiglucocorticoid treatment on 5-HT1A function in depressed patients and healthy subjects. Neuropsychopharmacology 17:246–257

    Article  CAS  PubMed  Google Scholar 

  • Price LH, Malison RT, McDougle CJ, McCance-Katz EF, Owen KR, Heninger GR (1997b) Neurobiology of tryptophan depletion in depression: effects of m-chlorophenylpiperazine (mCPP). Neuropsychopharmacology 17:342–350

    Google Scholar 

  • Price LH, Malison RT, McDougle CJ, Pelton GH, Heninger GR (1998a) The neurobiology of tryptophan depletion in depression: effects of intravenous tryptophan infusion. Biol Psychiatry 43:339–347

    Google Scholar 

  • Price ML, Curtis AL, Kirby LG, Valentino RJ, Lucki I (1998b) Effects of corticotropin-releasing factor on brain serotonergic activity. Neuropsychopharmacology 18:492–502

    CAS  PubMed  Google Scholar 

  • Rajewska J, Rybakowski JK (2003) Depression in premenopausal women: gonadal hormones and serotonergic system assessed by d-fenfluramine challenge test. Prog Neuropsychopharmacol Biol Psychiatry 27:705–709

    Article  CAS  PubMed  Google Scholar 

  • Rang HP, Dale MM (1991) Pharmacology, 2nd edn. Churchill Livingstone, Edinburgh, New York

  • Reul JM, de Kloet ER, van Sluijs FJ, Rijnberk A, Rothuizen J (1990) Binding characteristics of mineralocorticoid and glucocorticoid receptors in dog brain and pituitary. Endocrinology 127:907–915

    CAS  PubMed  Google Scholar 

  • Riedel W, Klaassen T, Griez E, Honig A, Menheere P, Van Praag HM (2002a) Dissociable hormonal, cognitive and mood responses to neuroendocrine challenge: evidence for receptor-specific serotonergic dysregulation in depressed mood. Neuropsychopharmacology 26:358–367

    Google Scholar 

  • Riedel WJ, Sobczak S, Nicolson N, Honig A (2002b) Stress, cortisol and memory as markers of serotonergic vulnerability. Acta Neuropsychiatrica 14:186–191

    Article  Google Scholar 

  • Rubin R, Poland R, Lesser I, Winston R, Blodgett N (1987) Neuroendocrine aspects of primary endogenous depression, cortisol secretory dynamics in patients and matched controls. Arch Gen Psychiatry 44:328–336

    CAS  PubMed  Google Scholar 

  • Sachar EJ, Hellman L, Roffwarg HP, Halpern FS, Fukushima DK, Gallagher TF (1973) Disrupted 24-hour patterns of cortisol secretion in psychotic depression. Arch Gen Psychiatry 28:19–24

    CAS  PubMed  Google Scholar 

  • Sargent PA, Kjaer KH, Bench CJ, Rabiner EA, Messa C, Meyer J, Gunn RN, Grasby PM, Cowen PJ (2000) Brain serotonin1A receptor binding measured by positron emission tomography with [11C]WAY-100635: effects of depression and antidepressant treatment. Arch Gen Psychiatry 57:174–180

    CAS  PubMed  Google Scholar 

  • Shapira B, Newman ME, Gelfin Y, Lerer B (2000) Blunted temperature and cortisol responses to ipsapirone in major depression: lack of enhancement by electroconvulsive therapy. Psychoneuroendocrinology 25:421–438

    Article  CAS  PubMed  Google Scholar 

  • Skare SS, Dysken MW, Billington CJ (1994) A review of GHRH stimulation test in psychiatry. Biol Psychiatry 36:249–265

    CAS  PubMed  Google Scholar 

  • Smith CE, Ware CJ, Cowen PJ (1991) Pindolol decreases prolactin and growth hormone responses to intravenous l-tryptophan. Psychopharmacology 103:140–142

    CAS  PubMed  Google Scholar 

  • Smith KA, Williams C, Cowen PJ (2000) Impaired regulation of brain serotonin function during dieting in women recovered from depression. Br J Psychiatry 176:72–75

    CAS  PubMed  Google Scholar 

  • Smythe GA, Mitchell PB (1992) Endocrine and amine responses to d,l-fenfluramine in normal subjects. Am J Psychiatry 149:851–2

    Google Scholar 

  • Sobczak S, Honig A, Nicholson N, Riedel W (2002) Effects of acute tryptophan depletion on mood and cortisol release in first-degree relatives of type I and type II bipolar patients and healthy matched controls. Neuropsychopharmacology 27:834–842

    Article  CAS  PubMed  Google Scholar 

  • Sowers JR, Hershman JM, Showsky WR, Carlson HE, Park J (1977) Osmotic control of the release of prolactin and thyrotropin in euthyroid subjects and patients with pituitary tumors. Metabolism 26:187–192

    CAS  PubMed  Google Scholar 

  • Steckler T, Holsboer F, Reul JMH (1999) Glucocorticoids and depression. Bailliere’s Best Pract Res Clin Endocrinol Metab 13:597–614

  • Steiger A, Holsboer F (1997) Neuropeptides and human sleep. Sleep 20:1038–1052

    CAS  PubMed  Google Scholar 

  • Strickland PL, Deakin JF, Percival C, Dixon J, Gater RA, Goldberg DP (2002) Bio-social origins of depression in the community. Interactions between social adversity, cortisol and serotonin neurotransmission. Br J Psychiatry 180:168–173

    Article  PubMed  Google Scholar 

  • Thakore JH, Dinan TG (1994) Growth hormone secretion: the role of glucocorticoids. Life Sci 55:1083–1099

    Article  CAS  PubMed  Google Scholar 

  • Traskman-Bendz L, Haskett RF, Zis AP (1986) Neuroendocrine effects of l-tryptophan and dexamethasone. Psychopharmacology 89:85–88

    CAS  PubMed  Google Scholar 

  • van Praag HM, Lemus C, Kahn R (1987) Hormonal probes of central serotonergic activity: do they really exist? Biol Psychiatry 22:86–98

    PubMed  Google Scholar 

  • Vining RF, McGinley RA, Maksvytis JJ, Ho KY (1983) Salivary cortisol: a better measure of adrenal cortical function than serum cortisol. Ann Clin Biochem 20:329–335

    CAS  PubMed  Google Scholar 

  • Wajchenberg BL, Liberman B, Neto DG, Morozimato MY, Semer M, Bracco LO, Salgado LR, Knoepfelmacher M, Borges MHS, Pinto ACAR, Kater CE, Lengyel AMJ (1996) Growth hormone axis in Cushing’s syndrome. Horm Res 45:99–107

    CAS  PubMed  Google Scholar 

  • Watson S, Porter RJ, Young AH (2000) Effect of hydrocortisone on the pituitary response to growth hormone releasing hormone. Psychopharmacology 152:40–46

    CAS  PubMed  Google Scholar 

  • Hearn AJ, Gallagher P, Owen BM, Smith MS, Watson S, Young AH (2004) Effect of sub-chronic hydrocortisone on responses to amphetamine in normal male volunteers. Psychopharmacology 171:458–464

    Article  CAS  PubMed  Google Scholar 

  • Wurtman RJ (1982) Nutrients that modify brain function. Sci Am 246:50–59

    CAS  PubMed  Google Scholar 

  • Young AH, Sharpley AL, Campling GM, Hockney RA, Cowen PJ (1994) Effects of hydrocortisone on brain 5-HT function and sleep. J Affect Disord 32:139–146

    CAS  PubMed  Google Scholar 

  • Young AH, Rue J, Odontiadis J, Cowen PJ (1998) Lack of effect of hydrocortisone treatment on d-fenfluramine-mediated prolactin release. Psychopharmacology 136:198–200

    CAS  PubMed  Google Scholar 

  • Young EA, Lopez JF, Murphy-Weinberg V, Watson SJ, Akil H (2003) Mineralocorticoid receptor function in major depression. Arch Gen Psychiatry 60:24–28

    CAS  PubMed  Google Scholar 

  • Zobel AW, Nickel T, Sonntag A, Uhr M, Holsboer F, Ising M (2001) Cortisol response in the combined dexamethasone/CRH test as predictor of relapse in patients with remitted depression: a prospective study. J Psychiatr Res 35:83–94

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Porter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porter, R.J., Gallagher, P., Watson, S. et al. Corticosteroid-serotonin interactions in depression: a review of the human evidence. Psychopharmacology 173, 1–17 (2004). https://doi.org/10.1007/s00213-004-1774-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-004-1774-1

Keywords

Navigation