Skip to main content
Log in

Drug-induced stimulation and suppression of action monitoring in healthy volunteers

Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Action monitoring has been studied extensively by means of measuring the error-related negativity (ERN). The ERN is an event-related potential (ERP) elicited immediately after an erroneous response and is thought to originate in the anterior cingulate cortex (ACC). Although the ACC has a central role in the brain, only a few studies have been performed to investigate directly the effects of drugs on action monitoring. A recent theory argues that the mesencephalic dopamine system carries an error signal to the ACC, where it generates the ERN.

Methods

ERPs and behavioral measurements were obtained from 12 healthy volunteers performing an Eriksen Flankers task. On each of the 4 test days, the stimulant d-amphetamine, the sedative lorazepam, the antidepressant mirtazapine, or a placebo was orally administered in a double-blind, four-way crossover design.

Results

The indirect dopamine agonist amphetamine led to a strong enlargement of ERN amplitudes without affecting reaction times. Lorazepam and mirtazapine both showed slowing of responses, but only lorazepam led to reduced ERN amplitudes.

Conclusions

Administration of amphetamine leads to stimulated action monitoring, reflected in increased ERN amplitudes. This result provides evidence for dopaminergic involvement in action monitoring and is in line with differences in ERN amplitude found in neuropsychiatric disorders also suggesting dopaminergic involvement. The different effects for lorazepam and mirtazapine are probably caused by the neurobiological characteristics of these two types of sedation. Action monitoring is suppressed after administration of lorazepam, because the GABAergic pathways directly inhibit ACC functioning, whereas the histaminergic pathways of mirtazapine do not innervate the ACC directly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. Subjective ratings were systematically collected on each testing day at four different moments in time. All results of these self-reports can be found in Sabbe et al. (2003).

References

  • Adler CM, McDonough-Ryan P, Sax KW, Holland SK, Arndt S, Strakowski SM (2000) fMRI of neuronal activation with symptom provocation in unmedicated patients with obsessive compulsive disorder. J Psychiatr Res 34:317–324

    Article  CAS  PubMed  Google Scholar 

  • Alain C, McNeely HE, He Y, Christensen BK, West R (2002) Neurophysiological evidence of error-monitoring deficits in patients with schizophrenia. Cereb Cortex 12:840–846

    Article  PubMed  Google Scholar 

  • Bates AT, Kiehl KA, Laurens KR, Liddle PF (2002) Error-related negativity and correct response negativity in schizophrenia. Clin Neurophysiol 113:1454–1463

    Article  PubMed  Google Scholar 

  • Bernstein PS, Scheffers MK, Coles MGH (1995) “Where did I go wrong?” A psychophysiological analysis of error detection. J Exp Psychol [Hum Percept Perform] 21:1312–1322

    CAS  PubMed  Google Scholar 

  • Botvinick MM, Braver TS, Barch DM, Carter CS, Cohen JD (2001) Conflict monitoring and cognitive control. Psychol Rev 108:624–652

    Article  CAS  PubMed  Google Scholar 

  • Carter CS, Mintun M, Nichols T, Cohen JD (1997) Anterior cingulate gyrus dysfunction and selective attention deficits in schizophrenia: [15O]H2O PET study during single-trial stroop task performance. Am J Psychiatry 154:1670–1675

    CAS  PubMed  Google Scholar 

  • Carter CS, Braver TS, Barch DM, Botvinick M, Noll D, Cohen JD (1998) Anterior cingulate cortex, error detection, and the online monitoring of performance. Science 378:180–182

    Google Scholar 

  • Carter CS, MacDonald AW III, Ross LL, Stenger VA (2001) Anterior cingulate cortex activity and impaired self-monitoring of performance in patients with schizophrenia: an event-related fMRI study. Am J Psychiatry 158:1423–1428

    Article  CAS  PubMed  Google Scholar 

  • Cohen JD, Botvinick M, Carter CS (2000) Anterior cingulate and prefrontal cortex: who’s in control. Nat Neurosci 3:421–423

    Article  CAS  PubMed  Google Scholar 

  • Coles MGH, Scheffers MK, Holroyd CB (2001) Why is there an ERN/Ne on correct trials? Response representations, stimulus-related components, and the theory of error-processing. Biol Psychol 56:173–189

    CAS  PubMed  Google Scholar 

  • Dehaene S, Posner MI, Tucker DM (1994) Localization of a neural system for error detection and compensation. Psychol Sci 5:303–305

    Google Scholar 

  • De Bruijn ERA, Mars RB, Hulstijn W (2004) “It wasn’t me... or was it?” How false feedback affects performance. In: M Falkenstein, M Ullsperger (eds) Errors, conflicts, and the brain. Current opinions on performance monitoring. MPI of cognitive neuroscience, Leipzig

  • Eriksen BA, Eriksen CW (1974) Effects of noise letters upon the identification of a target letter in a non-search task. Percept Psychophys 16:143–149

    Google Scholar 

  • Falkenstein M, Hohnsbein J, Hoormann J, Blanke L (1991) Effects of cross-modal divided attention on late ERP components. II. Error processing in choice reaction tasks. Electroencephalogr Clin Neurophysiol 78:447–455

    CAS  PubMed  Google Scholar 

  • Falkenstein M, Hoormann J, Christ S, Hohnsbein J (2000) ERP components on reaction errors and their functional significance: a tutorial. Biol Psychol 51:87–107

    CAS  PubMed  Google Scholar 

  • Falkenstein M, Hielscher H, Dziobek I, Schwarzenau P, Hoormann J, Sunderman B, Hohnsbein J (2001a) Action monitoring, error detection, and the basal ganglia: an ERP study. Neuroreport 12:157–161

    CAS  PubMed  Google Scholar 

  • Falkenstein M, Hoormann J, Hohnsbein J (2001b) Changes of error-related ERPs with age. Exp Brain Res 138:258–262

    CAS  PubMed  Google Scholar 

  • Gehring WJ, Goss B, Coles MGH, Meyer DE, Donchin E (1993) A neural system for error-detection and compensation. Psychol Sci 4:385–390

    Google Scholar 

  • Gehring WJ, Himle J, Nisenson LG (2000) Action-monitoring dysfunction in obsessive-compulsive disorder. Psychol Sci 11:1–6

    Article  CAS  PubMed  Google Scholar 

  • Gratton G, Coles MG, Donchin E (1983) A new method for off-line removal of ocular artifact. Electroencephalogr Clin Neurophysiol 55:468–484

    Google Scholar 

  • Gratton G, Coles MGH, Donchin E (1992) Optimizing the use of information: strategic control of activation and responses. J Exp Psychol Gen 4:480–506

    Google Scholar 

  • Hajcak G, Simons RF (2002) Error-related brain activity in obsessive-compulsive undergraduates. Psychiatry Res 110:63–72

    Article  PubMed  Google Scholar 

  • Holroyd CB, Coles MGH (2002) The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychol Rev 109:679–709

    Article  PubMed  Google Scholar 

  • Holroyd CB, Dien J, Coles MGH (1998) Error-related scalp potentials elicited by hand and foot movements: evidence for an output-independent error-processing system in humans. Neurosci Lett 242:65–68

    CAS  PubMed  Google Scholar 

  • Holroyd CB, Praamstra P, Plat E, Coles MG (2002) Spared error-related potentials in mild to moderate Parkinson’s disease. Neuropsychologia 40:2116–2124

    Article  PubMed  Google Scholar 

  • Hsu FC, Garside MJ, Massey AE, McAllister-Williams RH (2003) Effects of a single dose of cortisol on the neural correlates of episodic memory and error processing in healthy volunteers. Psychopharmacology 167:431–442

    CAS  PubMed  Google Scholar 

  • Johannes S, Wieringa BM, Nager W, Dengler R, Münte TF (2001) Oxazepam alters action monitoring. Psychopharmacology 155:100–106

    Article  CAS  PubMed  Google Scholar 

  • Kiehl KA, Liddle PF, Hopfinger JB (2000) Error processing and the rostral anterior cingulate: an event-related fMRI study. Psychophysiology 37:216–223

    CAS  PubMed  Google Scholar 

  • Kopp B, Rist F (1999) An event-related brain potential substrate of disturbed response monitoring in paranoid schizophrenic patients. J Abnorm Psychol 108:337–346

    Article  CAS  PubMed  Google Scholar 

  • Kopp B, Rist F, Mattler U (1996) N200 in the flankers task as a neurobehavioral tool for investigating executive control. Psychophysiology 33:282–294

    Google Scholar 

  • Laurens KR, Ngan ETC, Bates AT, Kiehl KA, Liddle PF (2003) Rostral anterior cingulate cortex dysfunction during error processing in schizophrenia. Brain 126:610–622

    Article  PubMed  Google Scholar 

  • Mathalon DH, Fedor M, Faustman WO, Gray M, Askari N, Ford JM (2002) Response monitoring dysfunction in schizophrenia: an event-related brain potential study. J Abnorm Psychol 111:22–41

    Article  PubMed  Google Scholar 

  • Nieuwenhuis S, Yeung N, Van den Wildenberg W, Ridderinkhof KR (2003) Electrophysiological correlates of anterior cingulate function in a Go/NoGo task: effects of response conflict and trial-type frequency. Cognit Affect Behav Neurosci 3:17–26

    PubMed  Google Scholar 

  • Nieuwenhuys R (1985) Chemoarchitecture of the brain. Springer, Berlin

  • Pailing PE, Segalowitz SJ, Dywan J, Davies PL (2002) Error negativity and response control. Psychophysiology 39:198–206

    Article  PubMed  Google Scholar 

  • Paus T (2001) Primate anterior cingulate cortex: where motor control, drive and cognition interface. Nat Rev Neurosci 2:417–424

    Article  CAS  PubMed  Google Scholar 

  • Rabbitt PMA (1966) Errors and error correction in choice reaction tasks. J Exp Psychol 71:264–272

    CAS  PubMed  Google Scholar 

  • Ridderinkhof KR, de Vlugt Y, Bramlage A, Spaan M, Elton M, Snel J, Band GP (2002) Alcohol consumption impairs the detection of performance errors by mediofrontal cortex. Science 298:2209–2211

    Article  CAS  PubMed  Google Scholar 

  • Riley SCE, James C, Gregory D, Dingle H, Cadger M (2001) Patterns of recreational drug use at dance events in Edinburgh, Scotland. Addiction 96:1035–1047

    Article  CAS  PubMed  Google Scholar 

  • Sabbe BGC, Hulstijn W, Verkes RJ, Nijs MG, Wezenberg, E (2003) Psychomotor and cognitive effects of lorazepam, d-amphetamine and mirtazepine in healthy subjects. Clinical trial report, Unit for Clinical Psychopharmacology and Neuropsychiatry, University Medical Center Nijmegen

  • Suhara T, Okubo Y, Yasuno F, Sudo Y, Inoue M, Ichimiya T, Nakashima Y, Nakayama K, Tanada S, Suzuki K, Halldin C, Farde L (2002) Decreased dopamine D2 receptor binding in the anterior cingulate cortex in schizophrenia. Arch Gen Psychiatry 59:25–30

    Article  CAS  PubMed  Google Scholar 

  • Ursu S, Stenger VA, Shear MK, Jones MR, Carter CS (2003) Overactive action monitoring in obsessive-compulsive disorder: evidence from functional magnetic resonance imaging. Psychol Sci 14:347–353

    Article  PubMed  Google Scholar 

  • Van Veen V, Carter CS (2002a) The timing of action-monitoring processes in the anterior cingulate cortex. J Cognit Neurosci 14:593–602

    Article  PubMed  Google Scholar 

  • Van Veen V, Carter CS (2002b) The anterior cingulate cortex as a conflict monitor: fMRI and ERP studies. Physiol Behav 77:477–482

    Article  PubMed  Google Scholar 

  • Vollenweider FX, Maguire RP, Leenders KL, Mathys K, Angst J (1998) Effects of high amphetamine dose on mood and cerebral glucose metabolism in normal volunteers using positron emission tomography (PET). Psychiatry Res 83:149–162

    Article  CAS  PubMed  Google Scholar 

  • Yeung N, Botvinick MM, Cohen JD (2004) The neural basis of error detection: conflict monitoring and the error-related negativity. Psychol Rev (in press)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Jos Wittebrood and Hubert Voogd for technical support, Elke Wezenberg for her helpful assistance in data collection, and Clay Holroyd, Rogier Mars, and Sander Nieuwenhuis for comments on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen R. A. de Bruijn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Bruijn, E.R.A., Hulstijn, W., Verkes, R.J. et al. Drug-induced stimulation and suppression of action monitoring in healthy volunteers. Psychopharmacology 177, 151–160 (2004). https://doi.org/10.1007/s00213-004-1915-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-004-1915-6

Keywords

Navigation