Skip to main content
Log in

Tryptophan depletion reduces right inferior prefrontal activation during response inhibition in fast, event-related fMRI

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale and objective

In animal and human studies, the neurotransmitter serotonin (5-hydroxytryptamine; 5-HT) has been implicated in mediating impulsiveness and aggression. To test the hypothesis that 5-HT modulates neuro-cognitive brain activation during inhibitory control, we examined the effect of acute tryptophan depletion (ATD), a dietary challenge, which has been shown to decrease 5-HT synthesis in the brain, on functional brain activation during a go/no-go task.

Methods

Nine healthy, right-handed volunteers performed a rapid, event-related go/no-go task in two functional magnetic resonance imaging (fMRI) scanning sessions, 5 h after either a tryptophan-free or a balanced amino acid drink in a double-blind, sham depletion-controlled, counterbalanced, crossover design. The task required subjects to selectively execute or inhibit a motor response. Tryptophan depletion significantly lowered total plasma tryptophan concentration by 80%, but did not significantly alter inhibitory performance or mood ratings.

Results

ATD significantly reduced right orbito-inferior prefrontal activation during the no-go condition, and increased activation in superior and medial temporal cortices.

Conclusions

These findings provide neuro-functional evidence of a serotonergic modulation of right inferior prefrontal during inhibitory motor control. The increased engagement of temporal brain regions may reflect compensatory mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbott FV, Etienne P, Franklin KBJ, Morgan MJ, Sewitch MJ, Young SN (1992) Acute Tryptophan depletion blocks morphine analgesia in the cold-pressor test in humans. Psychopharmacology 108:60–66

    CAS  PubMed  Google Scholar 

  • Ahveninen J, Kahkonen S, Pennanen S, Liesivuori J, Ilmoniemi RJ, Jaaskelainen IP (2002) Tryptophan depletion effects on EEG and MEG responses suggest serotonergic modulation of auditory involuntary attention in humans. NeuroImage 16:1052–1061

    Article  Google Scholar 

  • Anderson SW, Bechara A, Damasio H, Tranel D, Damasio AR (1999) Impairment of social and moral behavior related to early damage in human prefrontal cortex. Nat Neurosci 2:1032–1037

    Article  CAS  PubMed  Google Scholar 

  • Anderson IM, Clark L, Elliott R, Kulkarni B, Williams SR, Deakin JFW (2002) 5-HT2C receptor activation by m-chlorophenylpiperazine detected in humans with fMRI. NeuroReport 13:1547–1551

    Article  Google Scholar 

  • Annett MA (1970) A classification of hand preference by association analysis. Br J Psychol 61:303–321

    CAS  PubMed  Google Scholar 

  • Asberg M, Schalling D, Traksman-Benz L, Wagner A (1987) Psychobiology of suicide, impulsivity, and related phenomena. In: Psychopharmacology: third generation of success (HY Meltzer). Raven Press, New York, pp 655–688

    Google Scholar 

  • Beck A, Ward C, Mendelson M, Mock J, Erbaugh J (1961) A scale for measuring depression. Arch Gen Psychiatry 4:561–571

    CAS  PubMed  Google Scholar 

  • Benkelfat C, Ellenbogen MA, Dean P, Palmour RM, Young SN (1994) Mood lowering effects of tryptophan depletion enhanced susceptibility in young men at genetic risk for major affective disorders. Arch Gen Psychiatry 51:687–697

    CAS  PubMed  Google Scholar 

  • Biggio G, Fadda F, Fanni P, Tagliamonte A, Gessa GL (1974) Rapid depletion of serum tryptophan, brain tryptophan, serotonin and 5-hydroxyindoleacetice acid by a tryptophan free diet. Life Sci 14:1321–1329

    Article  CAS  PubMed  Google Scholar 

  • Bjork JM, Dougherty DM, Moeller FG, Cherek DR, Swann AC (1999) The effects of tryptophan depletion and loading on laboratory aggression in men: time course and a food-restricted control. Psychopharmacology 142:24–30

    Article  Google Scholar 

  • Bjork JM, Dougherty DM, Moeller FG, Cherek DR, Swann AC (2000) Differential behavioural effects of plasma tryptophan depletion and loading in aggressive and nonaggressive men. Neuropsychopharmacology 22:357–369

    Article  Google Scholar 

  • Bjork JM, Moeller FG, Dougherty DM, Swann AC, Machado MA, Hanis CL (2002) Serotonin 2a receptor T102C polymorphism and impaired impulse control. Am J Med Genet 114:336–339

    Article  Google Scholar 

  • Blair JB, Cipolotti L (2000) Impaired social response reversal: a case of ‘acquired sociopathy’. Brain 123:1122–1141

    Article  Google Scholar 

  • Bond A, Lader M (1974) The use of analogue scales in rating subjective feelings. Br J Med Psychol 47:211–218

    Google Scholar 

  • Bond A, Lader M (1986) A method to elicit aggressive feelings and behaviour via provocation. Biol Psychol 22:69–79

    Article  Google Scholar 

  • Brammer MJ, Bullmore ET, Simmons A, Williams SCR, Grasby PM, Howard RJ, Woodruff PWR, Rabe-Hesketh SR (1997) Generic brain activation mapping in functional magnetic resonance imaging: a non-parametric approach. Magn Reson Imaging 15:763–770

    Article  Google Scholar 

  • Braver TS, Barch DM, Gray JR, Molfese DL, Snyder A (2001) Anterior cingulate and response conflict: effects of frequency, inhibition and errors. Cereb Cortex 11:825–836

    Article  CAS  PubMed  Google Scholar 

  • Brower MC, Price BH (2001) Neuropsychiatry of frontal lobe dysfunction in violent and criminal behaviour: a critical review. J Neurol Neurosurg Psychiatry 71:720–726

    Article  Google Scholar 

  • Bullmore ET, Suckling J, Overmeyer S, Rabe-Hesketh S, Taylor E, Brammer MJ (1999) Global, voxel, and cluster tests, by theory and permutation, for a difference between two groups of structural MR images of the brain. IEEE Trans Med Imag 18:32–42

    Article  Google Scholar 

  • Bullmore ET, Long C, Suckling J, Fadili J, Calvert G, Zelaya F, Carpenter TA, Brammer M (2001) Coloured noise and computational inference in neurophysiological (fMRI) time series analysis: resampling methods in time and wavelet domains. Hum Brain Mapp 12:61–78

    Article  Google Scholar 

  • Buss AH, Durkee A (1957) An inventory for assessing different kinds of hostility. J Consult Psychol 21:343–349

    CAS  PubMed  Google Scholar 

  • Carpenter LL, Anderson GM, Pelton GH, Gudin JA, Kirwon PS, Price LH, Heninger GR, McDougle CJ (1998) Trytophan depletion during continuous CSF sampling in healthy human subjects. Neuropsychopharmacology 19:26–35

    Article  CAS  PubMed  Google Scholar 

  • Cherek DR, Lane SD, Pietras CJ, Steinberg JL (2002) Effects of chronic paroxetine administration on measures of aggressive and impulsive responses of adult males with a history of conduct disorder. Psychopharmacologia 159:266–274

    Article  Google Scholar 

  • Cleare AJ, Bond, AJ (1995) The effect of tryptophan depletion and enhancement on subjective and behavioral aggression in normal male subjects. Psychopharmacology 118:72–81

    CAS  PubMed  Google Scholar 

  • Cleare AJ, Bond AJ (2000) Experimental evidence that the aggressive effect of tryptophan depletion is mediated via the 5-HT1A receptor. Psychopharmacology 147:439–441

    Article  Google Scholar 

  • Coccaro EF, Kavoussi RK, Trestman RL, Gabriel SM, Cooper TB, Siever LJ (1997) Serotonin function in human subjects: intercorrelations among central 5-HT indices and aggressiveness. Psychiatry Res 73:1–14

    Article  Google Scholar 

  • Coull JC, Sahakian BJ, Middleton HC, Young AH, Park SB, McShane RH, Cowen PJ, Robbins TW (1995) Differential effects of clonidine, haloperidol, diazepam and tryptophan depletion on focused attention and attentional search. Psychopharmacology 121:222–230

    CAS  PubMed  Google Scholar 

  • Dale AM (1999) Optimal experimental design for event-related fMRI. Hum Brain Mapp 8:109–114

    Google Scholar 

  • Danjou P, Hamon M, Lacomblez L, Warot D, Kecskemeti S, Puech AJ (1990) Psychomotor, subjective and neuroendocrine effects of acute tryptophan depletion in the healthy volunteer. Psychiatr Psychobiol 5:31–38

    Google Scholar 

  • DeZubicaray GI, Andrew C, Zelaya FO, Williams FCR, Dumanoir C (2000) Motor response suppression and the prepotent tendency to respond: a parametric fMRI study. Neuropsychologia 38:1280–1291

    Article  PubMed  Google Scholar 

  • Dias R, Robbins TW, Roberts AC (1996) Dissociation in prefrontal cortex of affective and attentional shifts. Nature 380:69–72

    Article  CAS  PubMed  Google Scholar 

  • Dittman-Balcar A, Juebner M, Jentzen W, Schall U (2001) Dorsolateral prefrontal cortex activation during automatic auditory duration-mismatch processing in humans: a positron emission tomography study. Neurosci Lett 308:119–122

    Article  Google Scholar 

  • Durston S, Thomas KM, Worden MS, Yang Y, Casey BJ (2002) The effect of preceding context on inhibition: an event related fMRI study. NeuroImage 16:449–453

    CAS  PubMed  Google Scholar 

  • Ellenbogen MA, Young SN, Dean P, Palmour RM, Benkelfat C (1996) Mood response to acute tryptophan depletion in healthy volunteers: sex differences and temporal stability. Neuropsychopharmacology 15:465–474

    Article  CAS  PubMed  Google Scholar 

  • Fernstrom JD, Faller DV (1978) Neutral amino acids in the brain: changes in response to food ingestion. J Neurochem 30:1531–1538

    Google Scholar 

  • First MB, Spitzer RL, Gibbon M, Williams JBW (1995) Structured clinical interview for DSM-IV Axis I disorders. New York State Psychiatric Institute, Biometrics Research New York

  • Fletcher PJ, Korth KM, Chambers JW (1999) Selective destruction of brain serotonin neurons by 5,7-dihydroxytryptamine increases responding for a conditioned reward. Psychopharmacology (Berlin) 147:291–299

    Article  Google Scholar 

  • Friston KJ, Holmes AP, Worsley KJ (1999) How many subjects constitute a study? NeuroImage 10:1–5

    Article  CAS  PubMed  Google Scholar 

  • Fuster JM (1989) The prefrontal cortex: anatomy, physiology and neuropsychology of the frontal lobe. Raven, New York

    Google Scholar 

  • Garavan H, Ross TJ, Stein EA (1999) Right hemispheric dominance of inhibitory control: an event-related functional MRI study. Proc Natl Acad Sci U S A 9614:8301–8306

    Article  Google Scholar 

  • Hamilton M (1960) A rating scale for depression. J Neurol Neurosurg Psychiatry 23:56–62

    CAS  PubMed  Google Scholar 

  • Harrison AA, Everitt BJ, Robbins TW (1997) Double dissociable effects of median- and dorsal-raphe lesions on the performance of the five-choice serial reaction time test of attention in rats. Behav Brain Res 89:135–149

    Article  Google Scholar 

  • Harrison AA, Robbins TW, Everitt BJ (1999) Central serotonin depletion impairs both the acquisition and performance of a symmetrically reinforced go/no-go conditional visual discrimination. Behav Brain Res 100:99–112

    Article  CAS  PubMed  Google Scholar 

  • Hoptman MJ, Volavka J, Johnson G, Weiss E, Bilder RM, Lim KO (2002) Frontal white matter microstructure, aggression, and impulsivity in men with schizophrenia: a preliminary study. Biol Psychiatry 52:9–14

    Article  Google Scholar 

  • Ichimiya T, Suhara T, Sudo Y, Okubo Y, Nakayama K, Nankai M et al (2002) Serotonin transporter binding in patients with mood disorders: a PET study with [C-11](+)McN5652. Biol Psychiatry 51:715–722

    Article  Google Scholar 

  • Jemel B, Achenbach C, Muller BW, Ropcke B, Oades RD (2002) Mismatch negativity results from bilateral asymmetric dipole sources in the frontal and temporal lobes. Brain Topogr 15:13–27

    Article  Google Scholar 

  • Keating J, Dratcu L, Lader M, Sherwood RA (1993) Measurement of plasma serotonin by high-performance liquid chromatography with electrochemical detection as an index of the in vivo activity of fluvoxamine. J Chromatogr 615:237–242

    Google Scholar 

  • Kiehl KA, Liddle PF, Hopfinger JB (2000) Error processing and the rostral anterior cingulate: an event-related fMRI study. Psychophysiology 37:216–223

    Google Scholar 

  • Konishi S, Nakajima K, Uchida I, Sekihara K, Miyashita Y (1998) No-go dominant brain activity in human inferior prefrontal cortex revealed by functional magnetic resonance imaging. Eur J Neurosci 10:1209–1213

    Article  CAS  PubMed  Google Scholar 

  • Konishi S, Nakajima K, Uchida I, Kikyo H, Kameyama M, Miyashita Y (1999) Common inhibitory mechanism in human inferior prefrontal cortex revealed by event-related functional MRI. Brain 122:981–991

    Article  PubMed  Google Scholar 

  • Kruesi MJ, Hibbs ED, Zahn TP, Keysor CS, Hamburger SD, Bartko JJ, Rapoport JL (1992) A 2-year prospective follow-up study of children and adolescents with disruptive behaviour disorders. Arch Gen Psychiatry 49:429–435

    Google Scholar 

  • LeMarquand DG, Pihl RO, Young SN, Tremblay RE, Seguin JR, Palmour RM, Benkelfat C (1998) Tryptophan depletion, executive functions and disinhibition in aggressive, adolescents males. Neuropsychopharmacology 19:333–341

    Article  Google Scholar 

  • Liddle PF, Kiehl KA, Smith AM (2001) Event-related fMRI study of response inhibition. Hum Brain Mapp 12:100–109

    Article  CAS  PubMed  Google Scholar 

  • Mann JJ (1999) Role of the serotonergic system in the pathogenesis of major depression and suicidal behavior. Neuropsychopharmacology 21:99S–105S

    Google Scholar 

  • Meltzer HY, Umberkoman-Wiita B, Robertson A, Tricou BJ, Lowry M, Perline R (1984) Effect of 5-hydroxytryptophan on serum cortisol levels in major affective disorders. Arch Gen Psychiatry 41:366–374

    CAS  PubMed  Google Scholar 

  • Menkes DB, Coates DC, Fawcett JP (1994) Acute tryptophan depletion aggravates premenstrual syndrome. J Affect Disord 32:37–44

    Article  Google Scholar 

  • Menon V, Adleman NE, White CD, Glover GH, Reiss AL (2001) Error-related brain activation during a go/no-go response inhibition task. Hum Brain Mapp 12:131–143

    Article  Google Scholar 

  • Moeller FG, Dougherty DM, Swann AC, Collins D, Davis CM, Cherek DR (1996) Tryptophan depletion and aggressive responding in healthy males. Psychopharmacologia 126:97–103

    Google Scholar 

  • Moja EA, Stoff DM, Gessa GL, Castoldi D, Assereto R, Tofanetti O (1988) Decrease in plasma tryptophan after tryptophan-free amino acid mixtures in man. Life Sci 42:1551–1556

    Article  Google Scholar 

  • Moore P, Landolt HP, Seifritz E, Clark C, Bhatti T, Kelsoe J et al (2000) Clinical and physiological consequences of rapid tryptophan depletion. Neuropsychopharmacology 23:601–622

    Article  CAS  PubMed  Google Scholar 

  • Moore TM, Scarpa A, Raine A (2002) A meta-analysis of serotonin metabolite 5-HIAA and antisocial behavior. Aggress Behav 28:299–316

    Article  Google Scholar 

  • Morand C, Young SN, Ervin FR (1983) Clinical response of aggressive schizophrenics to oral tryptophan. Biol Psychiatry 18:575–578

    Google Scholar 

  • Morgan MJ (1998) Recreational use of “ecstasy” (MDMA) is associated with elevated impulsivity. Neuropsychopharmacology 19:252–264

    Google Scholar 

  • Morris JS, Smith KA, Cowen PJ, Friston KJ, Dolan RJ (1999) Covariation of activity in habenula and dorsal raphe nuclei following tryptophan depletion. NeuroImage 10:163–172

    Article  Google Scholar 

  • Murphy FC, Smith KA, Cowen PJ, Robbins TW, Sahakian BJ (2002) The effects of tryptophan depletion on cognitive and affective processing in healthy volunteers. Psychopharmacologia 163:42–53

    Article  Google Scholar 

  • Nelson HE (1982) National adult reading test manual. NFER-Nelson, Berks, Windsor

    Google Scholar 

  • Nishizawa S, Benkelfat C, Young SN, Leyton M, Mzengeza S, de Montigny C, Blier P, Diksic M (1997) Differences between males and females in rates of serotonin synthesis in the human brain. Proc Natl Acad Sci U S A 94:5308–5313

    Article  CAS  PubMed  Google Scholar 

  • Oldman AD, Walsh AES, Salkovskis P, Laver DA, Cowen PJ (1994) Effect of acute tryptophan depletion on mood and appetite in healthy volunteers. J Psychopharmacol 8:8–13

    Google Scholar 

  • Olendorf WH, Szabo J (1976) Amino acid assignment to one of three blood–brain barrier amino acid carriers. Am J Physiol 230:94–98

    Google Scholar 

  • Opitz B, Mecklinger AD, Frederici AD, von Cramon DY (1999) The functional neuroanatomy of novelty processing: integrating ERP and fMRI results. Cereb Cortex 9:379–391

    Article  Google Scholar 

  • Oquendo MA, Mann JJ (2000) The biology of impulsivity and suicidality. Psychiatr Clin North Am 23:11–25

    Google Scholar 

  • Park SB, Coull JT, McShane RH, Young AH, Sahakian BJ, Robbins TW, Cowen PJ (1994) Tryptophan depletion in normal volunteers produces selective impairments in learning and memory. Neuropharmacology 33:575–588

    Google Scholar 

  • Patton JH, Stanford MS, Barrat ES (1995) Factor structure of the Barrat impulsiveness scale. J Clin Psychol 51:768–774

    CAS  PubMed  Google Scholar 

  • Pihl RO, Young SN, Harden P, Plotnick S, Chamberlain B, Ervin FR (1995) Acute effect of altered tryptophan levels and alcohol on aggression in normal human males. Psychopharmacologia 119:353–360

    Google Scholar 

  • Placidi GPA, Oquendo MA, Huang YY, Ellis SP, Mann JJ (2001) Aggressivity, suicide attempts, and depression: relationship to cerebrospinal fluid monoamine metabolite levels. Biol Psychiatry 50:783–791

    Article  Google Scholar 

  • Reilly JG, McTavish SFB, Young AH (1997) Rapid depletion of plasma tryptophan: a review of studies and experimental methodology. J Psychopharmacol 11:381–392

    CAS  PubMed  Google Scholar 

  • Richter-Levin G, Segal M (1996) Serotonin, aging and cognitive functions of the hippocampus. Rev Neurosci 7:103–113

    Google Scholar 

  • Riedel WJ, Klaassen T, Deutz NEP, Someren A, van Praag HM (1999) Tryptophan depletion in normal volunteers produces selective impairment in memory consolidation. Psychopharmacology 141:362–369

    Article  CAS  PubMed  Google Scholar 

  • Riedel WJ, Klaassen T, Schmitt AJ (2002) Tryptophan, mood and cognitive function. Brain Behav Immun 16:581–589

    Article  CAS  PubMed  Google Scholar 

  • Robbins TW (1997) Arousal systems and attentional processes. Biol Psychol 45:57–71

    Article  Google Scholar 

  • Robbins TW (2000) Chemical neuromodulation of frontal -executive functions in humans and other animals. Exp Brain Res 133:130–138

    Article  CAS  PubMed  Google Scholar 

  • Rogers RD, Blackshaw AJ, Middleton HC, Mathews K, Hawtin K, Crowley C et al (1999) Tryptophan depletion impairs stimulus-reward learning while methylphenidate disrupts attentional control in healthy young adults: implications for the monoaminergic basis of impulsive behaviour. Psychopharmacology 146:482–491

    CAS  PubMed  Google Scholar 

  • Rolls ET, Hornak J, Wade D, McGrath J (1994) Emotion-related learning in patients with social and emotional changes associated with frontal lobe damage. J Neurol Neurosurg Psychiatry 57:1518–1524

    Google Scholar 

  • Rubia K (2002) The dynamic approach to neurodevelopmental psychiatric disorders: use of fMRI combined with neuropsychology to elucidate the dynamics of psychiatric disorders, exemplified in ADHD and schizophrenia. Behav Brain Res 130:47–56

    Article  Google Scholar 

  • Rubia K, Overmeyer S, Taylor E, Brammer M, Williams SCR, Simmons A et al (1999) Hypofrontality in Attention Deficit Hyperactivity Disorder during higher order motor control: a study with fMRI. Am J Psychiatry 156:891–896

    PubMed  Google Scholar 

  • Rubia K, Overmeyer S, Taylor E, Brammer M, Williams SCR, Simmons A, Bullmore ET (2000) Frontalisation with age: mapping neurodevelopmental trajectories with fMRI. Neurosci Biobehav Rev 241:13–21

    Article  Google Scholar 

  • Rubia K, Russell T, Overmeyer S, Brammer M, Bullmore ET, Sharma T, Simmons A, Williams SCR, Giampietro V, Andrew C, Taylor E (2001a) Mapping motor inhibition: conjunctive brain activations across different versions of go/no-go and stop tasks. NeuroImage 13:250–261

    Article  CAS  PubMed  Google Scholar 

  • Rubia K, Smith A, Lidzba K, Williams SCR, Simmons A, Toone B, Taylor E (2001b) Inhibition of response and inhibition of interference, event related. NeuroImage 136:S352

    Article  Google Scholar 

  • Rubia K, Taylor E, Smith AB, Oksanen H, Overmeyer S, Newman S (2001c) Neuropsychological analyses of impulsiveness in childhood hyperactivity. Br J Psychiatry 179:138–143

    Article  Google Scholar 

  • Rubia K, Smith AB, Brammer MJ, Taylor E (2003) Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection. NeuroImage 20:351–358

    Article  Google Scholar 

  • Rubia K, Smith AB, Brammer MJ, Brian Toone B, Taylor E (2004) Medication-naïve adolescents with Attention-Deficit Hyperactivity Disorder show abnormal brain activation during inhibition and error detection. Am J Psych (in press)

  • Rubinsztein JS, Rogers RD, Riedel WJ, Mehtam MA, Robbins TW, Sahakian BJ (2001) Acute dietary tryptophan depletion impairs maintenance of ‘affective set’ and delayed visual recognition in healthy volunteers. Psychopharmacology 154:319–326

    Article  Google Scholar 

  • Salomon RM, Mazure CM, Delgado PL, Mendia P, Charney DS (1994) Serotonin function in aggression: the effect of acute plasma tryptophan depletion in aggressive patients. Biol Psychiatry 35:570–572

    Article  Google Scholar 

  • Schmitt JAJ, Jorissen BL, Sobczak S, van Boxtel MPJ, Hogervorst E, Deutz NEP, Riedel WJ (2000) Tryptophan depletion impairs memory consolidation but improves focussed attention in healthy volunteers. J Psychopharmacol 14:21–29

    CAS  PubMed  Google Scholar 

  • Sirvio J, Riekkinen P, Jakala P, Riekkinen PJ (1994) Experimental studies on the role of serotonin in cognition. Prog Neurobiol 43:363–379

    Article  Google Scholar 

  • Smith KA, Clifford EM, Hockney RA, Clark DM (1997a) Effect of tryptophan depletion on mood in male and female volunteers: a pilot study. Hum Psychopharmacol 12:111–117

    Article  Google Scholar 

  • Smith KA, Fairburn CG, Cowen PJ (1997b) Relapse of depression after rapid depletion of tryptophan. Lancet 349:915–919

    Article  CAS  PubMed  Google Scholar 

  • Smith KA, Morris JS, Friston KJ, Cowen PJ, Dolan RJ (1999) Brain mechanisms associated with depressive relapse and associated cognitive impairment following acute tryptophan depletion. Br J Psychiatry 174:525–529

    Google Scholar 

  • Sommer W, Moeller C, Wiklund L, Thorsell A, Rimondini R, Nissbrandt H, Heilig M (2001) Local 5,7-dihydroxytryptamine lesions of rat amygdala: release of punished drinking, unaffected plus-maze behaviour and ethanol consumption. Neuropsychopharmacology 24:430–440

    Article  Google Scholar 

  • Soubrié P (1986) Reconciling the role of central serotonin neurons in human and animal behavior. Behav Brain Sci 9:319–364

    Google Scholar 

  • Stevens AA, Skudlarski P, Gatenby JC, Gore JC (2000) Event-related fMRI of auditory and visual oddball tasks. Magn Reson Imaging 18:495–502

    Article  Google Scholar 

  • Szabo Z, Scheffel U, McCann U, Dannals RF, Ravert HT, Mathews WB et al (1997) Reductions of 5-HT transporters in MDMA users observed using PET with [C-11]{+}McN5652. Soc Neurosci Abstr 123:2–23

    Google Scholar 

  • Talairach J, Tournoux P (1988) A co-planar stereotactic atlas of the human brain. Thieme Medical Publishers, New York

    Google Scholar 

  • Thakore JH, O’Keane V, Dinan TG (1996) d-Fenfluramine induced prolactin response in mania: evidence for serotonergic subsensitivity. Am J Psychiatry 153:1460–1463

    Google Scholar 

  • Virkkunen M, Kallio E, Rawlings R, Tokola R, Poland RE, Guidotti A et al (1994) Personality profiles and state aggressiveness in Finnish alcoholic, violent offenders, fire setters, and healthy volunteers. Arch Gen Psychiatry 51:28–33

    Google Scholar 

  • Walderhaug E, Lunde H, Nordvik JE, Landro NI, Refsum H, Magnusson A (2002) Lowering of serotonin by rapid tryptophan depletion increases impulsiveness in normal individuals. Psychopharmacology 164:385–391

    Article  CAS  PubMed  Google Scholar 

  • Ward BO, Wilkinson LS, Robbins TW, Everitt BJ (1999) Forebrain serotonin depletion facilitates the acquisition and performance of a conditional visual discrimination task in rats. Behav Brain Res 100:51–65

    Article  Google Scholar 

  • Williams WA, Shoaf SE, Hommer D, Rawlings R, Linnoila M (1999) Effects of acute tryptophan depletion on plasma and cerebrospinal fluid tryptophan and 5-hydroxyindoleacetic acid in normal volunteers. J Neurochem 72:1641–1644

    Article  CAS  PubMed  Google Scholar 

  • Yatham LN, Liddle PF, Shiah I-S, Lam RW, Adam MJ, Zis AP, Ruth TJ (2001) Effects of rapid tryptophan depletion on brain 5-HT2 receptors: a PET study. Br J Psychiatry 178:448–453

    Article  CAS  PubMed  Google Scholar 

  • Yoshiura T, Zhong J, Shibata DK, Kwok WE, Sgrier DA, Numaguchi Y (1999) Functional MRI study of auditory and visual oddball tasks. NeuroReport 10:1683–1688

    Google Scholar 

  • Young SN, Smith SE, Pihl RO, Ervin FR (1985) Tryptophan depletion causes a rapid lowering of mood in normal males. Psychopharmacology 87:173–177

    Article  Google Scholar 

  • Young SN, Tourjman SV, Teff KL, Pihl RO, Ervin FR, Anderson GH (1988) The effect of lowering of plasma tryptophan on food selection in normal males. Pharmacol Biochem Behav 31:149–152

    Article  Google Scholar 

  • Young SN, Irvine FR, Phil RO, Finn P (1989) Biochemical aspects of tryptophan depletion in primates. Psychopharmacology 98:508–511

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Kate John in the Department of Clinical Biochemistry for the analysis of the tryptophan assays. The study was funded by the Theodore and Vada Stanley Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katya Rubia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubia, K., Lee, F., Cleare, A.J. et al. Tryptophan depletion reduces right inferior prefrontal activation during response inhibition in fast, event-related fMRI. Psychopharmacology 179, 791–803 (2005). https://doi.org/10.1007/s00213-004-2116-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-004-2116-z

Keywords

Navigation