Skip to main content
Log in

Involvement of the endogenous cannabinoid system in the effects of alcohol in the mesolimbic reward circuit: electrophysiological evidence in vivo

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Several lines of evidence indicate that the endogenous cannabinoid system is involved in the pharmacological and behavioural effects of alcohol. The mesolimbic dopaminergic (DA) system and the nucleus accumbens (NAc) process rewarding properties of drugs of abuse, including alcohol and cannabinoids, whereas endocannabinoids in these regions modulate synaptic function and mediate short- and long-term forms of synaptic plasticity.

Objectives

The present study was designed to investigate the contribution of the endogenous cannabinoid system in alcohol electrophysiological effects in the mesolimbic reward circuit.

Methods

We utilized extracellular single cell recordings from ventral tegmental area (VTA) DA and NAc neurons in anesthetized rats. DA neurons were antidromically identified as projecting to the shell of NAc, whereas NAc putative medium spiny neurons were identified by their evoked responses to basolateral amygdala (BLA) stimulation.

Results

Alcohol stimulated firing rate of VTA DA neurons and inhibited BLA-evoked NAc neuron spiking responses. The cannabinoid type-1 receptor (CB1) antagonist rimonabant (SR141716A) fully antagonized alcohol effect in both regions. In the NAc, either inhibition of the major catabolic enzyme of the endocannabinoid anandamide, the fatty-acid amyd hydrolase, with URB597 or a pretreatment with the CB1 receptor agonist WIN55212-2 significantly depressed alcohol-induced effects in the NAc.

Conclusions

These results corroborate the notion of the involvement of endocannabinoids and their receptors in the actions of alcohol and highlight the endocannabinoid system as a valuable target in the therapy for alcoholism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arnone M, Maruani J, Chaperon F, Thiebot MH, Poncelet M, Soubrie P, Le Fur G (1997) Selective inhibition of sucrose and ethanol intake by SR 141716, an antagonist of central cannabinoid (CB1) receptors. Psychopharmacology (Berl) 132:104–106

    Article  CAS  Google Scholar 

  • Basavarajappa BS, Hungund BL (1999a) Chronic ethanol increases the cannabinoid receptor agonist anandamide and its precursor N-arachidonoylphosphatidylethanolamine in SK-N-SH cells. J Neurochem 72:522–528

    Article  PubMed  CAS  Google Scholar 

  • Basavarajappa BS, Hungund BL (1999b) Down-regulation of cannabinoid receptor agonist-stimulated [35S]GTP gamma S binding in synaptic plasma membrane from chronic ethanol exposed mouse. Brain Res 815:89–97

    Article  PubMed  CAS  Google Scholar 

  • Basavarajappa BS, Cooper TB, Hungund BL (1998) Chronic ethanol administration down-regulates cannabinoid receptors in mouse brain synaptic plasma membrane. Brain Res 793:212–218

    Article  PubMed  CAS  Google Scholar 

  • Basavarajappa BS, Saito M, Cooper TB, Hungund BL (2000) Stimulation of cannabinoid receptor agonist 2-arachidonylglycerol by chronic ethanol and its modulation by specific neuromodulators in cerebellar granule neurons. Biochim Biophys Acta 1535:78–86

    PubMed  CAS  Google Scholar 

  • Bisogno T, Berrendero F, Ambrosino G, Cebeira M, Ramos JA, Fernandez-Ruiz JJ, Di Marzo V (1999) Brain regional distribution of endocannabinoids: implications for their biosynthesis and biological function. Biochem Biophys Res Commun 256:377–380

    Article  PubMed  CAS  Google Scholar 

  • Brodie MS, Shefner SA, Dunwiddie TV (1990) Ethanol increases the firing rate of dopamine neurons of the rat ventral tegmental area in vitro. Brain Res 508:65–69

    Article  PubMed  CAS  Google Scholar 

  • Brodie MS, Pesold C, Appel SB (1999) Ethanol directly excites dopaminergic ventral tegmental area reward neurons. Alcohol Clin Exp Res 23:1848–1852

    PubMed  CAS  Google Scholar 

  • Colombo G, Agabio R, Fa M, Guano L, Lobina C, Loche A, Reali R, Gessa GL (1998) Reduction of voluntary ethanol intake in ethanol-preferring sP rats by the cannabinoid antagonist SR-141716. Alcohol Alcohol 33:126–130

    PubMed  CAS  Google Scholar 

  • Colombo G, Serra S, Brunetti G, Gomez R, Melis S, Vacca G, Carai MM, Gessa L (2002) Stimulation of voluntary ethanol intake by cannabinoid receptor agonists in ethanol-preferring sP rats. Psychopharmacology (Berl) 159:181–187

    Article  CAS  Google Scholar 

  • Colombo G, Vacca G, Serra S, Carai MA, Gessa GL (2004) Suppressing effect of the cannabinoid CB1 receptor antagonist, SR 141716, on alcohol's motivational properties in alcohol-preferring rats. Eur J Pharmacol 498:119–123

    Article  PubMed  CAS  Google Scholar 

  • Colombo G, Serra S, Vacca G, Carai MA, Gessa GL (2005) Endocannabinoid system and alcohol addiction: pharmacological studies. Pharmacol Biochem Behav 81:369–380

    Article  PubMed  CAS  Google Scholar 

  • Criado JR, Lee RS, Berg GI, Henriksen SJ (1997) Ethanol inhibits single-unit responses in the nucleus accumbens evoked by stimulation of the basolateral nucleus of the amygdala. Alcohol Clin Exp Res 21:368–374

    PubMed  CAS  Google Scholar 

  • da Silva GE, Morato GS, Takahashi RN (2001) Rapid tolerance to Delta(9)-tetrahydrocannabinol and cross-tolerance between ethanol and Delta(9)-tetrahydrocannabinol in mice. Eur J Pharmacol 431:201–207

    Article  PubMed  Google Scholar 

  • Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A 85:5274–5278

    Article  PubMed  Google Scholar 

  • Di Chiara G, Bassareo V, Fenu S, De Luca MA, Spina L, Cadoni C, Acquas E, Carboni E, Valentini V, Lecca D (2004) Dopamine and drug addiction: the nucleus accumbens shell connection. Neuropharmacology 47 (Suppl 1):227–241

    Google Scholar 

  • Di Marzo V, Berrendero F, Bisogno T, Gonzalez S, Cavaliere P, Romero J, Cebeira M, Ramos JA, Fernandez-Ruiz JJ (2000) Enhancement of anandamide formation in the limbic forebrain and reduction of endocannabinoid contents in the striatum of delta9-tetrahydrocannabinol-tolerant rats. J Neurochem 74:1627–1635

    Article  PubMed  Google Scholar 

  • Floresco SB, Blaha CD, Yang CR, Phillips AG (2001) Modulation of hippocampal and amygdalar-evoked activity of nucleus accumbens neurons by dopamine: cellular mechanisms of input selection. J Neurosci 21:2851–2860

    PubMed  CAS  Google Scholar 

  • Foddai M, Dosia G, Spiga S, Diana M (2004) Acetaldehyde increases dopaminergic neuronal activity in the VTA. Neuropsychopharmacology 29:530–536

    Article  PubMed  CAS  Google Scholar 

  • French ED, Dillon K, Wu X (1997) Cannabinoids excite dopamine neurons in the ventral tegmentum and substantia nigra. Neuroreport 8:649–652

    Article  PubMed  CAS  Google Scholar 

  • Freund TF, Katona I, Piomelli D (2003) Role of endogenous cannabinoids in synaptic signaling. Physiol Rev 83:1017–1066

    PubMed  CAS  Google Scholar 

  • Gallate JE, McGregor IS (1999) The motivation for beer in rats: effects of ritanserin, naloxone and SR 141716. Psychopharmacology (Berl) 142:302–308

    Article  CAS  Google Scholar 

  • Gallate JE, Saharov T, Mallet PE, McGregor IS (1999) Increased motivation for beer in rats following administration of a cannabinoid CB1 receptor agonist. Eur J Pharmacol 370:233–240

    Article  PubMed  CAS  Google Scholar 

  • Gallate JE, Mallet PE, McGregor IS (2004) Combined low dose treatment with opioid and cannabinoid receptor antagonists synergistically reduces the motivation to consume alcohol in rats. Psychopharmacology (Berl) 173:210–216

    Article  CAS  Google Scholar 

  • Gardner EL (2005) Endocannabinoid signaling system and brain reward: emphasis on dopamine. Pharmacol Biochem Behav 81:263–284

    Article  PubMed  CAS  Google Scholar 

  • Gessa GL, Muntoni F, Collu M, Vargiu L, Mereu G (1985) Low doses of ethanol activate dopaminergic neurons in the ventral tegmental area. Brain Res 348:201–203

    Article  PubMed  CAS  Google Scholar 

  • Gessa GL, Melis M, Muntoni AL, Diana M (1998) Cannabinoids activate mesolimbic dopamine neurons by an action on cannabinoid CB1 receptors. Eur J Pharmacol 341:39–44

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez S, Fernandez-Ruiz J, Di Marzo V, Hernandez M, Arevalo C, Nicanor C, Cascio MG, Ambrosio E, Ramos JA (2004) Behavioral and molecular changes elicited by acute administration of SR141716 to Delta9-tetrahydrocannabinol-tolerant rats: an experimental model of cannabinoid abstinence. Drug Alcohol Depend 74:159–170

    Article  PubMed  CAS  Google Scholar 

  • Grace AA, Bunney BS (1983) Intracellular and extracellular electrophysiology of nigral dopaminergic neurons—1. Identification and characterization. Neuroscience 10:301–315

    Article  PubMed  CAS  Google Scholar 

  • Grace AA, Bunney BS (1984) The control of firing pattern in nigral dopamine neurons: burst firing. J Neurosci 4:2877–2890

    PubMed  CAS  Google Scholar 

  • Guyenet PG, Aghajanian GK (1978) Antidromic identification of dopaminergic and other output neurons of the rat substantia nigra. Brain Res 150:69–84

    Article  PubMed  CAS  Google Scholar 

  • Hakan RL, Eyl C (1995) Neuropharmacology of the nucleus accumbens: iontophoretic applications of morphine and nicotine have contrasting effects on single-unit responses evoked by ventral pallidal and fimbria stimulation. Synapse 20:175–184

    Article  PubMed  CAS  Google Scholar 

  • Hakan RL, Hart C, Eyl C (1993) Specific neurophysiological effects of systemic nicotine on neurons in the nucleus accumbens. Synapse 15:191–197

    Article  PubMed  CAS  Google Scholar 

  • Hanlon EC, Baldo BA, Sadeghian K, Kelley AE (2004) Increases in food intake or food-seeking behavior induced by GABAergic, opioid, or dopaminergic stimulation of the nucleus accumbens: is it hunger? Psychopharmacology (Berl) 172:241–247

    Article  CAS  Google Scholar 

  • Herkenham M, Lynn AB, Johnson MR, Melvin LS, de Costa BR, Rice KC (1991) Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci 11:563–583

    PubMed  CAS  Google Scholar 

  • Hill MN, Patel S, Carrier EJ, Rademacher DJ, Ormerod BK, Hillard CJ, Gorzalka BB (2005) Downregulation of endocannabinoid signaling in the hippocampus following chronic unpredictable stress. Neuropsychopharmacology 30:508–515

    Article  PubMed  CAS  Google Scholar 

  • Hoffman AF, Lupica CR (2001) Direct actions of cannabinoids on synaptic transmission in the nucleus accumbens: a comparison with opioids. J Neurophysiol 85:72–83

    PubMed  CAS  Google Scholar 

  • Hoffman PL, Rabe CS, Moses F, Tabakoff B (1989) N-methyl-D-aspartate receptors and ethanol: inhibition of calcium flux and cyclic GMP production. J Neurochem 52:1937–1940

    Article  PubMed  CAS  Google Scholar 

  • Houchi H, Babovic D, Pierrefiche O, Ledent C, Daoust M, Naassila M (2005) CB1 receptor knockout mice display reduced ethanol-induced conditioned place preference and increased striatal dopamine D2 receptors. Neuropsychopharmacology 30:339–349

    Article  PubMed  CAS  Google Scholar 

  • Hungund BL, Szakall I, Adam A, Basavarajappa BS, Vadasz C (2003) Cannabinoid CB1 receptor knockout mice exhibit markedly reduced voluntary alcohol consumption and lack alcohol-induced dopamine release in the nucleus accumbens. J Neurochem 84:698–704

    Article  PubMed  CAS  Google Scholar 

  • Imperato A, Di Chiara G (1986) Preferential stimulation of dopamine release in the nucleus accumbens of freely moving rats by ethanol. J Pharmacol Exp Ther 239:219–228

    PubMed  CAS  Google Scholar 

  • Kathuria S, Gaetani S, Fegley D, Valino F, Duranti A, Tontini A, Mor M, Tarzia G, La Rana G, Calignano A, Giustino A, Tattoli M, Palmery M, Cuomo V, Piomelli D (2003) Modulation of anxiety through blockade of anandamide hydrolysis. Nat Med 9:76–81

    Article  PubMed  CAS  Google Scholar 

  • Lipski J (1981) Antidromic activation of neurones as an analytic tool in the study of the central nervous system. J Neurosci Methods 4:1–32

    Article  PubMed  CAS  Google Scholar 

  • Lovinger DM, White G, Weight FF (1989) Ethanol inhibits NMDA-activated ion current in hippocampal neurons. Science 243:1721–1724

    Article  PubMed  CAS  Google Scholar 

  • Lupica CR, Riegel AC (2005) Endocannabinoid release from midbrain dopamine neurons: a potential substrate for cannabinoid receptor antagonist treatment of addiction. Neuropharmacology 48:1105–1116

    Article  PubMed  CAS  Google Scholar 

  • Mato S, Chevaleyre V, Robbe D, Pazos A, Castillo PE, Manzoni OJ (2004) A single in-vivo exposure to delta 9THC blocks endocannabinoid-mediated synaptic plasticity. Nat Neurosci 7:585–586

    Article  PubMed  CAS  Google Scholar 

  • Melis M, Perra S, Muntoni AL, Pillolla G, Lutz B, Marsicano G, Di Marzo V, Gessa GL, Pistis M (2004a) Prefrontal cortex stimulation induces 2-arachidonoyl-glycerol-mediated suppression of excitation in dopamine neurons. J Neurosci 24:10707–10715

    Article  PubMed  CAS  Google Scholar 

  • Melis M, Pistis M, Perra S, Muntoni AL, Pillolla G, Gessa GL (2004b) Endocannabinoids mediate presynaptic inhibition of glutamatergic transmission in rat ventral tegmental area dopamine neurons through activation of CB1 receptors. J Neurosci 24:53–62

    Article  PubMed  CAS  Google Scholar 

  • Mulder AB, Hodenpijl MG, Lopes da Silva FH (1998) Electrophysiology of the hippocampal and amygdaloid projections to the nucleus accumbens of the rat: convergence, segregation, and interaction of inputs. J Neurosci 18:5095–5102

    PubMed  CAS  Google Scholar 

  • Naassila M, Pierrefiche O, Ledent C, Daoust M (2004) Decreased alcohol self-administration and increased alcohol sensitivity and withdrawal in CB1 receptor knockout mice. Neuropharmacology 46:243–253

    Article  PubMed  CAS  Google Scholar 

  • Newman LM, Lutz MP, Gould MH, Domino EF (1972) 9-Tetrahydrocannabinol and ethyl alcohol: evidence for cross-tolerance in the rat. Science 175:1022–1023

    Article  PubMed  CAS  Google Scholar 

  • Newman LM, Lutz MP, Domino EF (1974) Delta9-tetrahydrocannabinol and some CNS depressants: evidence for cross-tolerance in the rat. Arch Int Pharmacodyn Ther 207:254–259

    PubMed  CAS  Google Scholar 

  • Ortiz S, Oliva JM, Perez-Rial S, Palomo T, Manzanares J (2004) Differences in basal cannabinoid CB1 receptor function in selective brain areas and vulnerability to voluntary alcohol consumption in Fawn Hooded and Wistar rats. Alcohol Alcohol 39:297–302

    PubMed  CAS  Google Scholar 

  • Patel S, Roelke CT, Rademacher DJ, Hillard CJ (2005) Inhibition of restraint stress-induced neural and behavioural activation by endogenous cannabinoid signalling. Eur J Neurosci 21:1057–1069

    Article  PubMed  Google Scholar 

  • Paxinos G, Watson C (1997) The rat brain in stereotaxic coordinates, 3rd edn. Academic, San Diego

    Google Scholar 

  • Pistis M, Ferraro L, Pira L, Flore G, Tanganelli S, Gessa GL, Devoto P (2002a) Delta(9)-tetrahydrocannabinol decreases extracellular GABA and increases extracellular glutamate and dopamine levels in the rat prefrontal cortex: an in vivo microdialysis study. Brain Res 948:155–158

    Article  PubMed  CAS  Google Scholar 

  • Pistis M, Muntoni AL, Pillolla G, Gessa GL (2002b) Cannabinoids inhibit excitatory inputs to neurons in the shell of the nucleus accumbens: an in vivo electrophysiological study. Eur J Neurosci 15:1795–1802

    Article  PubMed  Google Scholar 

  • Pistis M, Perra S, Pillolla G, Melis M, Gessa GL, Muntoni AL (2004) Cannabinoids modulate neuronal firing in the rat basolateral amygdala: evidence for CB1- and non-CB1-mediated actions. Neuropharmacology 46:115–125

    Article  PubMed  CAS  Google Scholar 

  • Pistis M, Muntoni AL, Pillolla G, Perra S, Cignarella G, Melis M, Gessa GL (2005) Gamma-hydroxybutyric acid (GHB) and the mesoaccumbens reward circuit: evidence for GABA(B) receptor-mediated effects. Neuroscience 131:465–474

    Article  PubMed  CAS  Google Scholar 

  • Poncelet M, Maruani J, Calassi R, Soubrie P (2003) Overeating, alcohol and sucrose consumption decrease in CB1 receptor deleted mice. Neurosci Lett 343:216–218

    PubMed  CAS  Google Scholar 

  • Riegel AC, Lupica CR (2004) Independent presynaptic and postsynaptic mechanisms regulate endocannabinoid signaling at multiple synapses in the ventral tegmental area. J Neurosci 24:11070–11078

    Article  PubMed  CAS  Google Scholar 

  • Robbe D, Alonso G, Duchamp F, Bockaert J, Manzoni OJ (2001) Localization and mechanisms of action of cannabinoid receptors at the glutamatergic synapses of the mouse nucleus accumbens. J Neurosci 21:109–116

    PubMed  CAS  Google Scholar 

  • Serra S, Brunetti G, Pani M, Vacca G, Carai MA, Gessa GL, Colombo G (2002) Blockade by the cannabinoid CB(1) receptor antagonist, SR 141716, of alcohol deprivation effect in alcohol-preferring rats. Eur J Pharmacol 443:95–97

    Article  PubMed  CAS  Google Scholar 

  • Sprague GL, Craigmill AL (1976) Ethanol and delta-9-tetrahydrocannabinol: mechanism for cross-tolerance in mice. Pharmacol Biochem Behav 5:409–415

    Article  PubMed  CAS  Google Scholar 

  • Sugiura T, Kondo S, Sukagawa A, Nakane S, Shinoda A, Itoh K, Yamashita A, Waku K (1995) 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun 215:89–97

    Article  PubMed  CAS  Google Scholar 

  • Sugiura T, Kodaka T, Nakane S, Miyashita T, Kondo S, Suhara Y, Takayama H, Waku K, Seki C, Baba N, Ishima Y (1999) Evidence that the cannabinoid CB1 receptor is a 2-arachidonoylglycerol receptor. Structure–activity relationship of 2-arachidonoylglycerol, ether-linked analogues, and related compounds. J Biol Chem 274:2794–2801

    Article  PubMed  CAS  Google Scholar 

  • Suzdak PD, Schwartz RD, Skolnick P, Paul SM (1986) Ethanol stimulates gamma-aminobutyric acid receptor-mediated chloride transport in rat brain synaptoneurosomes. Proc Natl Acad Sci U S A 83:4071–4075

    Article  PubMed  CAS  Google Scholar 

  • Tanda G, Pontieri FE, Di Chiara G (1997) Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common mu1 opioid receptor mechanism. Science 276:2048–2050

    Article  PubMed  CAS  Google Scholar 

  • Ungless MA, Magill PJ, Bolam JP (2004) Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli. Science 303:2040–2042

    Article  PubMed  CAS  Google Scholar 

  • Weiss F, Lorang MT, Bloom FE, Koob GF (1993) Oral alcohol self-administration stimulates dopamine release in the rat nucleus accumbens: genetic and motivational determinants. J Pharmacol Exp Ther 267:250–258

    PubMed  CAS  Google Scholar 

  • Wenger T, Moldrich G, Furst S (2003) Neuromorphological background of cannabis addiction. Brain Res Bull 61:125–128

    Article  PubMed  CAS  Google Scholar 

  • Wise RA (2004) Dopamine, learning and motivation. Nat Rev Neurosci 5:483–494

    Article  PubMed  CAS  Google Scholar 

  • Wise RA, Bozarth MA (1987) A psychomotor stimulant theory of addiction. Psychol Rev 94:469–492

    Article  PubMed  CAS  Google Scholar 

  • Wise R, Gardner E (2002) Functional anatomy of substance-related disorders. In: D'haenen H, den Boer J, Willner P (eds) Biological psychiatry. Wiley, New York, pp 509–522

    Chapter  Google Scholar 

  • Wright A, Terry P (2002) Modulation of the effects of alcohol on driving-related psychomotor skills by chronic exposure to cannabis. Psychopharmacology (Berl) 160:213–219

    Article  Google Scholar 

  • Yoshimoto K, McBride WJ, Lumeng L, Li TK (1992) Alcohol stimulates the release of dopamine and serotonin in the nucleus accumbens. Alcohol 9:17–22

    Article  PubMed  CAS  Google Scholar 

  • Zahm DS (2000) An integrative neuroanatomical perspective on some subcortical substrates of adaptive responding with emphasis on the nucleus accumbens. Neurosci Biobehav Rev 24:85–105

    Article  PubMed  CAS  Google Scholar 

  • Zygmunt PM, Petersson J, Andersson DA, Chuang H, Sorgard M, Di Marzo V, Julius D, Hogestatt ED (1999) Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400:452–457

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the grants of the Assessorato Igiene e Sanità (Regione Autonoma della Sardegna), PRIN 2003, FIRB 2001 (Italian Ministry of University). We wish to thank Sanofi-Aventis and, in particular, Dr. G. Le Fur for the generous gift of rimonabant and Mr. Stefano Aramo and Mrs. Barbara Tuveri for their skilled technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Pistis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perra, S., Pillolla, G., Melis, M. et al. Involvement of the endogenous cannabinoid system in the effects of alcohol in the mesolimbic reward circuit: electrophysiological evidence in vivo. Psychopharmacology 183, 368–377 (2005). https://doi.org/10.1007/s00213-005-0195-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-005-0195-0

Keywords

Navigation