Skip to main content
Log in

Calculating utility: preclinical evidence for cost–benefit analysis by mesolimbic dopamine

Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Throughout our lives we constantly assess the costs and benefits of the possible future outcomes of our actions and use this information to guide behavior. There is accumulating evidence that dopamine contributes to a fundamental component of this computation—how rewards are compared with the costs incurred when obtaining them.

Objective

We review the evidence for dopamine’s role in cost–benefit decision making and outline a simple mathematical framework in which to represent the interactions between rewards, costs, behavioral state and dopamine.

Conclusions

Dopamine’s effects on cost–benefit decision making can be modeled using simple utility–function curves. This approach provides a useful framework for modeling existing data and generating experimental hypotheses that can be objectively and quantitatively tested by observing choice behavior without the necessity to account for subjective psychological states such as pleasure or desire. We suggest that dopamine plays a key role in overcoming response costs and enabling high-effort behaviors. A particularly important anatomical site of this action is the core of the nucleus accumbens. Here, dopamine is able to modulate activity originating from the frontal cortical systems that also assess costs and rewards. Internal deprivation states (e.g., hunger and thirst) also help to energize goal-seeking behaviors, probably in part by their rich influence on dopamine, which can in turn modify decision making policies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  • Aberman JE, Salamone JD (1999) Nucleus accumbens dopamine depletions make rats more sensitive to high ratio requirements but do not impair primary food reinforcements. Neuroscience 92:545–552

    PubMed  CAS  Google Scholar 

  • Avanzi M, Uber E, Bonfa F (2004) Pathological gambling in two patients on dopamine replacement therapy for Parkinson’s disease. Neurol Sci 25:98–101

    PubMed  CAS  Google Scholar 

  • Balleine BW (2005) Neural bases of food-seeking: affect, arousal and reward in corticostriatolimbic circuits. Physiol Behav 86:717–730

    PubMed  CAS  Google Scholar 

  • Bassareo V, Tanda G, Petromilli P, Giua C, Di Chiara G (1996) Non-psychostimulant drugs of abuse and anxiogenic drugs activate with differential selectivity dopamine transmission in the nucleus accumbens and in the medial prefrontal cortex of the rat. Psychopharmacology (Berl) 124:293–299

    CAS  Google Scholar 

  • Bautista LM, Tinbergen J, Kacelnik A (2001) To walk or to fly? How birds choose among foraging modes. Proc Natl Acad Sci USA 98:1089–1094

    PubMed  CAS  Google Scholar 

  • Bechara A, Damasio H, Damasio AR, Lee GP (1999) Different contributions of the human amygdala and ventromedial prefrontal cortex to decision-making. J Neurosci 19:5473–5481

    PubMed  CAS  Google Scholar 

  • Berlin HA, Rolls ET, Kischka U (2004) Impulsivity, time perception, emotion and reinforcement sensitivity in patients with orbitofrontal cortex lesions. Brain 127:1108–1126

    PubMed  CAS  Google Scholar 

  • Berridge KC (2000) Measuring hedonic impact in animals and infants: microstructure of affective taste reactivity patterns. Neurosci Biobehav Rev 24:173–198

    PubMed  CAS  Google Scholar 

  • Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev 28:309–369

    PubMed  CAS  Google Scholar 

  • Berridge KC, Robinson TE (2003) Parsing reward. Trends Neurosci 26:507–513

    PubMed  CAS  Google Scholar 

  • Berridge KC, Venier IL, Robinson TE (1989) Taste reactivity analysis of 6-hydroxydopamine-induced aphagia: implications for arousal and anhedonia hypotheses of dopamine function. Behav Neurosci 103:36–45

    PubMed  CAS  Google Scholar 

  • Borgland SL, Taha SA, Sarti F, Fields HL, Bonci A (2006) Orexin A in the VTA is critical for the induction of synaptic plasticity and behavioral sensitization to cocaine. Neuron 49:589–601

    PubMed  CAS  Google Scholar 

  • Brog JS, Salyapongse A, Deutch AY, Zahm DS (1993) The patterns of afferent innervation of the core and shell in the “accumbens” part of the rat ventral striatum: immunohistochemical detection of retrogradely transported fluoro-gold. J Comp Neurol 338:255–278

    PubMed  CAS  Google Scholar 

  • Caine SB, Koob GF (1994) Effects of mesolimbic dopamine depletion on responding maintained by cocaine and food. J Exp Anal Behav 61:213–221

    PubMed  CAS  Google Scholar 

  • Cannon CM, Palmiter RD (2003) Reward without dopamine. J Neurosci 23:10827–10831

    PubMed  CAS  Google Scholar 

  • Cardinal RN, Robbins TW, Everitt BJ (2000) The effects of d-amphetamine, chlordiazepoxide, alpha-flupenthixol and behavioural manipulations on choice of signalled and unsignalled delayed reinforcement in rats. Psychopharmacology 152:362–375

    PubMed  CAS  Google Scholar 

  • Cardinal RN, Pennicott DR, Sugathapala CL, Robbins TW, Everitt BJ (2001) Impulsive choice induced in rats by lesions of the nucleus accumbens core. Science 292:2499–2501

    PubMed  CAS  Google Scholar 

  • Correa M, Carlson BB, Wisniecki A, Salamone JD (2002) Nucleus accumbens dopamine and work requirements on interval schedules. Behav Brain Res 137:179–187

    PubMed  CAS  Google Scholar 

  • Dayan P, Balleine BW (2002) Reward, motivation, and reinforcement learning. Neuron 36:285–298

    PubMed  CAS  Google Scholar 

  • Denk F, Walton ME, Jennings KA, Sharp T, Rushworth MFS, Bannerman DM (2005) Differential involvement of serotonin and dopamine systems in cost–benefit decisions about delay or effort. Psychopharmacology (Berl) 179:587–596

    CAS  Google Scholar 

  • Deroche-Gamonet V, Belin D, Piazza PV (2004) Evidence for addiction-like behavior in the rat. Science 305:1014–1017

    PubMed  CAS  Google Scholar 

  • Dodd ML, Klos KJ, Bower JH, Geda YE, Josephs KA, Ahlskog JE (2005) Pathological gambling caused by drugs used to treat Parkinson disease. Arch Neurol 62:1377–1381

    PubMed  Google Scholar 

  • Figlewicz DP, Evans SB, Murphy J, Hoen M, Baskin DG (2003) Expression of receptors for insulin and leptin in the ventral tegmental area/substantia nigra (VTA/SN) of the rat. Brain Res 964:107–115

    PubMed  CAS  Google Scholar 

  • Fillenz M (2005) In vivo neurochemical monitoring and the study of behaviour. Neurosci Biobehav Rev 29:949–962

    PubMed  CAS  Google Scholar 

  • Fiorillo CD, Tobler PN, Schultz W (2003) Discrete coding of reward probability and uncertainty by dopamine neurons. Science 299:1898–1902

    PubMed  CAS  Google Scholar 

  • Ford CP, Mark GP, Williams JT (2006) Properties and opioid inhibition of mesolimbic dopamine neurons vary according to target location. J Neurosci 26:2788–2797

    PubMed  CAS  Google Scholar 

  • Fulton S, Richard D, Woodside B, Shizgal P (2002) Interaction of CRH and energy balance in the modulation of brain stimulation reward. Behav Neurosci 116:651–659

    PubMed  CAS  Google Scholar 

  • Hnasko TS, Sotak BN, Palmiter RD (2005) Morphine reward in dopamine-deficient mice. Nature 438:854–857

    PubMed  CAS  Google Scholar 

  • Hsu M, Bhatt M, Adolphs R, Tranel D, Camerer CF (2005) Neural systems responding to degrees of uncertainty in human decision-making. Science 310:1680–1683

    PubMed  CAS  Google Scholar 

  • Ikemoto S, Panksepp J (1996) Dissociations between appetitive and consummatory responses by pharmacological manipulations of reward-relevant brain regions. Behav Neurosci 110:331–345

    PubMed  CAS  Google Scholar 

  • Ikemoto S, Panksepp J (1999) The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking. Brain Res Brain Res Rev 31:6–41

    PubMed  CAS  Google Scholar 

  • Jiang H, Betancourt L, Smith RG (2006) Ghrelin amplifies dopamine signaling by crosstalk involving formation of growth hormone secretagogue receptor/dopamine receptor subtype 1 heterodimers. Mol Endocrinol 20:1772–1785

    PubMed  CAS  Google Scholar 

  • Kacelnik A, Marsh B (2002) Cost can increase preference in starlings. Anim Behav 63:245–250

    Google Scholar 

  • Kelley AE (2004) Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning. Neurosci Biobehav Rev 27:765–776

    PubMed  Google Scholar 

  • Kheramin S, Body S, Ho MY, Velazquez-Martinez DN, Bradshaw CM, Szabadi E, Deakin JF, Anderson IM (2004) Effects of orbital prefrontal cortex dopamine depletion on inter-temporal choice: a quantitative analysis. Psychopharmacology (Berl) 175:206–214

    CAS  Google Scholar 

  • Kissinger PT, Hart JB, Adams, R.N. (1973) Voltammetry in brain tissue—a new neurophysiological measurement. Brain Res 55:209–213

    PubMed  CAS  Google Scholar 

  • Krugel U, Schraft T, Kittner H, Kiess W, Illes P (2003) Basal and feeding-evoked dopamine release in the rat nucleus accumbens is depressed by leptin. Eur J Pharmacol 482:185–187

    PubMed  Google Scholar 

  • Kuhnen CM, Knutson B (2005) The neural basis of financial risk taking. Neuron 47:763–770

    PubMed  CAS  Google Scholar 

  • Leeb K, Parker L, Eikelboom R (1991) Effects of pimozide on the hedonic properties of sucrose: analysis by the taste reactivity test. Pharmacol Biochem Behav 39:895–901

    PubMed  CAS  Google Scholar 

  • Ljungberg T, Apicella P, Schultz W (1992) Responses of monkey dopamine neurons during learning of behavioral reactions. J Neurophysiol 67:145–163

    PubMed  CAS  Google Scholar 

  • Long A, Platt M (2005) Decision making: the virtue of patience in primates. Curr Biol 15:R874–R876

    PubMed  CAS  Google Scholar 

  • Margolis EB, Lock H, Chefer VI, Shippenberg TS, Hjelmstad GO, Fields HL (2006) κ opioids selectively control dopaminergic neurons projecting to the prefrontal cortex. Proc Natl Acad Sci USA 103:2938–2942

    PubMed  CAS  Google Scholar 

  • Marinelli M, White FJ (2000) Enhanced vulnerability to cocaine self-administration is associated with elevated impulse activity of midbrain dopamine neurons. J Neurosci 20:8876–8885

    PubMed  CAS  Google Scholar 

  • Marsh B, Kacelnik A (2002) Framing effects and risky decisions in starlings. Proc Natl Acad Sci U S A 99:3352–3355

    PubMed  CAS  Google Scholar 

  • Matsushima T, Izawa E, Aoki N, Yanagihara S (2003) The mind through chick eyes: memory, cognition and anticipation. Zoolog Sci 20:395–408

    PubMed  Google Scholar 

  • McClure SM, Daw ND, Montague PR (2003) A computational substrate for incentive salience. Trends Neurosci 26:423–428

    PubMed  CAS  Google Scholar 

  • McClure SM, Laibson DI, Loewenstein G, Cohen JD (2004) Separate neural systems value immediate and delayed monetary rewards. Science 306:503–507

    PubMed  CAS  Google Scholar 

  • Mingote S, Weber SM, Ishiwari K, Correa M, Salamone JD (2005) Ratio and time requirements on operant schedules: effort-related effects of nucleus accumbens dopamine depletions. Eur J Neurosci 21:1749–1757

    Article  PubMed  Google Scholar 

  • Mirenowicz J, Schultz W (1994) Importance of unpredictability for reward responses in primate dopamine neurons. J Neurophysiol 72:1024–1027

    PubMed  CAS  Google Scholar 

  • Mobini S, Body S, Ho MY, Bradshaw CM, Szabadi E, Deakin JF, Anderson IM (2002) Effects of lesions of the orbitofrontal cortex on sensitivity to delayed and probabilistic reinforcement. Psychopharmacology (Berl) 160:290–298

    CAS  Google Scholar 

  • Montague PR, Dayan P, Sejnowski TJ (1996) A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J Neurosci 16:1936–1947

    PubMed  CAS  Google Scholar 

  • Narita M, Nagumo Y, Hashimoto S, Narita M, Khotib J, Miyatake M, Sakurai T, Yanagisawa M, Nakamachi T, Shioda S, Suzuki (2006) Direct involvement of orexinergic systems in the activation of the mesolimbic dopamine pathway and related behaviors induced by morphine. J Neurosci 26:398–405

    PubMed  CAS  Google Scholar 

  • Nicola SM, Woodward Hopf F, Hjelmstad GO (2004) Contrast enhancement: a physiological effect of striatal dopamine? Cell Tissue Res 318:93–106

    PubMed  Google Scholar 

  • Niv Y, Daw ND, Dayan P (2005) How fast to work: response vigor, motivation and tonic dopamine. In: Weiss Y, Schölkopf B, Platt J (eds) Advances in neural information processing systems. MIT Press, Cambridge, MA, pp 1019–1026

    Google Scholar 

  • Nowend KL, Arizzi M, Carlson BB, Salamone JD (2001) D1 or D2 antagonism in nucleus accumbens core or dorsomedial shell suppresses lever pressing for food but leads to compensatory increases in chow consumption. Pharmacol Biochem Behav 69:373–382

    PubMed  CAS  Google Scholar 

  • O’Donnell P (2003) Dopamine gating of forebrain neural ensembles. Eur J Neurosci 17:429–435

    PubMed  Google Scholar 

  • Pecina S, Berridge KC, Parker LA (1997) Pimozide does not shift palatability: separation of anhedonia from sensorimotor suppression by taste reactivity. Pharmacol Biochem Behav 58:801–811

    PubMed  CAS  Google Scholar 

  • Pecina S, Schulkin J, Berridge KC (2006) Nucleus accumbens corticotropin-releasing factor increases cue-triggered motivation for sucrose reward: paradoxical positive incentive effects in stress? BMC Biol 4:8

    PubMed  Google Scholar 

  • Phillips PEM, Wightman RM (2003) Critical guidelines for validation of the selectivity of in-vivo chemical microsensors. Trends Anal Chem 22:509–514

    CAS  Google Scholar 

  • Phillips PEM, Stuber GD, Heien ML, Wightman RM, Carelli RM (2003) Subsecond dopamine release promotes cocaine seeking. Nature 422:614–618

    PubMed  CAS  Google Scholar 

  • Pompilio L, Kacelnik A, Behmer ST (2006) State-dependent learned valuation drives choice in an invertebrate. Science 311:1613–1615

    PubMed  CAS  Google Scholar 

  • Rebec GV, Christensen JR, Guerra C, Bardo MT (1997) Regional and temporal differences in real-time dopamine efflux in the nucleus accumbens during free-choice novelty. Brain Res 776:61–67

    PubMed  CAS  Google Scholar 

  • Rescorla RA, Wagner AR (1972) A theory of Pavlovian conditioning: variations in the effectiveness of reinforcement and nonreinforcement. In: Black AH, Prokasy WF (eds) Classical conditioning II: current research and theory. Appleton Century Crofts, New York, pp 64–99

    Google Scholar 

  • Richards JB, Sabol KE, de Wit H (1999) Effects of methamphetamine on the adjusting amount procedure, a model of impulsive behavior in rats. Psychopharmacology (Berl) 146:432–439

    CAS  Google Scholar 

  • Robinson DL, Phillips PEM, Budygin EA, Trafton BJ, Garris PA, Wightman RM (2001) Sub-second changes in accumbal dopamine during sexual behavior in male rats. Neuroreport 12:2549–2552

    PubMed  CAS  Google Scholar 

  • Robinson S, Sandstrom, S.M., Denenberg, V.H., Palmiter RD (2005) Distinguishing whether dopamine regulates liking, wanting, and/or learning about rewards. Behav Neurosci 119:5–15

    PubMed  CAS  Google Scholar 

  • Rogers RD, Everitt BJ, Baldacchino A, Blackshaw AJ, Swainson R, Wynne K, Baker NB, Hunter J, Carthy T, Booker E, London M, Deakin JF, Sahakian BJ, Robbins TW (1999) Dissociable deficits in the decision-making cognition of chronic amphetamine abusers, opiate abusers, patients with focal damage to prefrontal cortex, and tryptophan-depleted normal volunteers: evidence for monoaminergic mechanisms. Neuropsychopharmacology 20:322–339

    PubMed  CAS  Google Scholar 

  • Roitman MF, Stuber GD, Phillips PEM, Wightman RM, Carelli RM (2004) Dopamine operates as a subsecond modulator of food seeking. J Neurosci 24:1265–1271

    PubMed  CAS  Google Scholar 

  • Salamone JD (1996) The behavioral neurochemistry of motivation: methodological and conceptual issues in studies of the dynamic activity of nucleus accumbens dopamine. J Neurosci Methods 64:137–149

    PubMed  CAS  Google Scholar 

  • Salamone JD, Correa M (2002) Motivational views of reinforcement: implications for understanding the behavioral functions of nucleus accumbens dopamine. Behav Brain Res 137:3–25

    PubMed  CAS  Google Scholar 

  • Salamone JD, Mahan K, Rogers S (1993) Ventrolateral striatal dopamine depletions impair feeding and food handling in rats. Pharmacol Biochem Behav 44:605–610

    PubMed  CAS  Google Scholar 

  • Salamone JD, Cousins MS, Bucher S (1994) Anhedonia or anergia? Effects of haloperidol and nucleus accumbens dopamine depletion on instrumental response selection in a T-maze cost/benefit procedure. Behav Brain Res 65:221–229

    PubMed  CAS  Google Scholar 

  • Salamone JD, Wisniecki A, Carlson BB, Correa M (2001) Nucleus accumbens dopamine depletions make animals highly sensitive to high fixed ratio requirements but do not impair primary food reinforcement. Neuroscience 105:863–870

    PubMed  CAS  Google Scholar 

  • Salamone JD, Correa M, Mingote SM, Weber SM, Farrar AM (2006) Nucleus accumbens dopamine and the forebrain circuitry involved in behavioral activation and effort-related decision making: implications for understanding anergia and psychomotor slowing in depression. Curr Psychiatry Rev 2:267–280

    Google Scholar 

  • Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80:1–27

    PubMed  CAS  Google Scholar 

  • Schultz W (2006) Behavioral theories and the neurophysiology of reward. Annu Rev Psychol 57:87–115

    PubMed  Google Scholar 

  • Schultz W, Dickinson A (2000) Neuronal coding of prediction errors. Annu Rev Neurosci 23:473–500

    PubMed  CAS  Google Scholar 

  • Schultz W, Apicella P, Ljungberg T (1993) Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. J Neurosci 13:900–913

    PubMed  CAS  Google Scholar 

  • Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275:1593–1599

    PubMed  CAS  Google Scholar 

  • Schweimer J, Hauber W (2005) Involvement of the rat anterior cingulate cortex in control of instrumental responses guided by reward expectancy. Learn Mem 12:334–342

    PubMed  Google Scholar 

  • Schweimer J, Saft S, Hauber W (2005) Involvement of catecholamine neurotransmission in the rat anterior cingulate in effort-related decision making. Behav Neurosci 119:1687–1692

    PubMed  CAS  Google Scholar 

  • Sesack SR, Pickel VM (1992) Prefrontal cortical efferents in the rat synapse on unlabeled neuronal targets of catecholamine terminals in the nucleus accumbens septi and on dopamine neurons in the ventral tegmental area. J Comp Neurol 320:145–160

    PubMed  CAS  Google Scholar 

  • Sokolowski JD, Salamone JD (1998) The role of accumbens dopamine in lever pressing and response allocation: effects of 6-OHDA injected into core and dorsomedial shell. Pharmacol Biochem Behav 59:557–566

    PubMed  CAS  Google Scholar 

  • Stevens JR, Rosati AG, Ross KR, Hauser MD (2005) Will travel for food: spatial discounting in two new world monkeys. Curr Biol 15:1855–1860

    PubMed  CAS  Google Scholar 

  • Stuber GD, Wightman RM, Carelli RM (2005) Extinction of cocaine self-administration reveals functionally and temporally distinct dopaminergic signals in the nucleus accumbens. Neuron 46:661–669

    PubMed  CAS  Google Scholar 

  • Sutton RS, Barto AG (1998) Reinforcement learning: an introduction. MIT Press, Cambridge, MA

    Google Scholar 

  • Swanson LW (1982) The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res Bull 9:321–353

    PubMed  CAS  Google Scholar 

  • Szarfman A, Doraiswamy PM, Tonning JM, Levine JG (2006) Association between pathologic gambling and parkinsonian therapy as detected in the Food and Drug Administration Adverse Event database. Arch Neurol 63:299–300

    PubMed  Google Scholar 

  • Tanaka SC, Doya K, Okada G, Ueda K, Okamoto Y, Yamawaki S (2004) Prediction of immediate and future rewards differentially recruits cortico-basal ganglia loops. Nat Neurosci 7:887–893

    PubMed  CAS  Google Scholar 

  • Tobler PN, Fiorillo CD, Schultz W (2005) Adaptive coding of reward value by dopamine neurons. Science 307:1642–1645

    PubMed  CAS  Google Scholar 

  • Ungless MA, Singh V, Crowder TL, Yaka R, Ron D, Bonci A (2003) Corticotropin-releasing factor requires CRF binding protein to potentiate NMDA receptors via CRF receptor 2 in dopamine neurons. Neuron 39:401–407

    PubMed  CAS  Google Scholar 

  • Vanderschuren LJ, Everitt BJ (2004) Drug seeking becomes compulsive after prolonged cocaine self-administration. Science 305:1017–1019

    PubMed  CAS  Google Scholar 

  • Wade TR, de Wit H, Richards JB (2000) Effects of dopaminergic drugs on delayed reward as a measure of impulsive behavior in rats. Psychopharmacology (Berl) 150:90–101

    CAS  Google Scholar 

  • Waelti P, Dickinson A, Schultz W (2001) Dopamine responses comply with basic assumptions of formal learning theory. Nature 412:43–48

    PubMed  CAS  Google Scholar 

  • Wakabayashi KT, Fields HL, Nicola SM (2004) Dissociation of the role of nucleus accumbens dopamine in responding to reward-predictive cues and waiting for reward. Behav Brain Res 154:19–30

    Article  PubMed  CAS  Google Scholar 

  • Walton ME, Bannerman DM, Rushworth MF (2002) The role of rat medial frontal cortex in effort-based decision making. J Neurosci 22:10996–11003

    PubMed  CAS  Google Scholar 

  • Walton ME, Bannerman DM, Alterescu K, Rushworth MF (2003) Functional specialization within medial frontal cortex of the anterior cingulate for evaluating effort-related decisions. J Neurosci 23:6475–6479

    PubMed  CAS  Google Scholar 

  • Walton ME, Croxson PL, Rushworth MF, Bannerman DM (2005) The mesocortical dopamine projection to anterior cingulate cortex plays no role in guiding effort-related decisions. Behav Neurosci 119:323–328

    PubMed  CAS  Google Scholar 

  • Walton ME, Kennerley SW, Bannerman DM, Phillips PEM, Rushworth MF (2006) Weighing up the benefits of work: behavioural and neural analyses of effort-related decision making. Neural Netw 19:1302–1314

    PubMed  CAS  Google Scholar 

  • Wellman PJ, Davis KW, Nation JR (2005) Augmentation of cocaine hyperactivity in rats by systemic ghrelin. Regul Pept 125:151–154

    PubMed  CAS  Google Scholar 

  • Wilson C, Nomikos GG, Collu M, Fibiger HC (1995) Dopaminergic correlates of motivated behavior: importance of drive. J Neurosci 15:5169–5178

    PubMed  CAS  Google Scholar 

  • Winstanley CA, Theobald DE, Cardinal RN, Robbins TW (2004) Contrasting roles of basolateral amygdala and orbitofrontal cortex in impulsive choice. J Neurosci 24:4718–4722

    PubMed  CAS  Google Scholar 

  • Winstanley CA, Theobald DE, Dalley JW, Robbins TW (2005) Interactions between serotonin and dopamine in the control of impulsive choice in rats: therapeutic implications for impulse control disorders. Neuropsychopharmacology 30:669–682

    PubMed  CAS  Google Scholar 

  • Winstanley CA, Theobald DE, Dalley JW, Cardinal RN, Robbins, T.W. (2006) Double dissociation between serotonergic and dopaminergic modulation of medial prefrontal and orbitofrontal cortex during a test of impulsive choice. Cereb Cortex 16:106–114

    PubMed  Google Scholar 

  • Wise RA (2004) Dopamine, learning and motivation. Nat Rev Neurosci 5:483–494

    PubMed  CAS  Google Scholar 

  • Wise RA, Spindler J, de Wit H, Gerberg GJ (1978) Neuroleptic-induced “anhedonia” in rats: pimozide blocks reward quality of food. Science 201:262–264

    PubMed  CAS  Google Scholar 

  • Yun IA, Wakabayashi KT, Fields HL, Nicola SM (2004) The ventral tegmental area is required for the behavioral and nucleus accumbens neuronal firing responses to incentive cues. J Neurosci 24:2923–2933

    PubMed  CAS  Google Scholar 

  • Zhou QY, Palmiter RD (1995) Dopamine-deficient mice are severely hypoactive, adipsic, and aphagic. Cell 83:1197–1209

    PubMed  CAS  Google Scholar 

  • Zigman JM, Jones JE, Lee CE, Saper CB, Elmquist JK (2006) Expression of ghrelin receptor mRNA in the rat and the mouse brain. J Comp Neurol 494:528–548

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank John Salamone for his intellectual input at the inception of this work. Support was provided from pilot project grant 5 P01 DA015916-04 (NIH/NIDA; PI: Chavkin) to PEMP. MEW was supported by a Human Frontier Science Program Short-term Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul E. M. Phillips.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phillips, P.E.M., Walton, M.E. & Jhou, T.C. Calculating utility: preclinical evidence for cost–benefit analysis by mesolimbic dopamine. Psychopharmacology 191, 483–495 (2007). https://doi.org/10.1007/s00213-006-0626-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-006-0626-6

Keywords

Navigation