Skip to main content

Advertisement

Log in

Glycine and d-serine, but not d-cycloserine, attenuate prepulse inhibition deficits induced by NMDA receptor antagonist MK-801

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Several agents that stimulate the glycine site of N-methyl-d-aspartate (NMDA) receptors have been reported to moderately improve both negative symptoms and cognitive dysfunctions in patients with schizophrenia. However, differences in efficacy have also been reported, and further comparative pharmacological studies are still needed.

Objectives

We aimed to explore the effects of two glycine site agonists of the NMDA receptor, glycine and d-serine, and a partial agonist, d-cycloserine, on prepulse inhibition (PPI) deficits induced by a NMDA receptor antagonist, MK-801, in mice. Furthermore, we performed in vivo microdialysis and additional PPI measurements using a selective glycine site antagonist to verify if the beneficial effects observed after the systemic administration of glycine were due to glycine itself via its activity at the glycine site.

Results

High doses of glycine (1.6 g/kg) and d-serine (1.8 and 2.7 g/kg) significantly attenuated MK-801-induced PPI deficits. In contrast, d-cycloserine did not show any amelioration of MK-801-induced PPI deficits at doses ranging from 7.5 mg/kg to 60 mg/kg. The selective glycine site antagonist, L-701,324 (10 mg/kg), antagonized the effect of glycine on MK-801-induced PPI deficits. Furthermore, in vivo microdialysis demonstrated that intraperitoneal injection of glycine significantly increased glycine and l-serine levels, but decreased d-serine levels in the prefrontal cortex.

Conclusions

The findings of the present study suggest that glycine and d-serine but not d-cycloserine could attenuate PPI deficits associated with NMDA receptor hypofunction via NMDA glycine sites in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abel KM, Allin MPG, Hemsley DR, Geyer MA (2003) Low dose ketamine increases prepulse inhibition in healthy men. Neuropharmacology 44:729–737

    Article  PubMed  CAS  Google Scholar 

  • Adler CM, Malhotra AK, Elman I, Goldberg T, Egan M et al (1999) Comparison of ketamine-induced thought disorder in healthy volunteers and thought disorder in schizophrenia. Am J Psychiatry 156:1646–1649

    PubMed  CAS  Google Scholar 

  • Bendikov I, Nadri C, Amar S, Panituzzuti R, De Miranda J et al (2007) A CSF and postmortem brain study of d-serine metabolic parameters in schizophrenia. Schizophr Res 90:41–51

    Article  PubMed  Google Scholar 

  • Braff DL, Geyer MA, Light GA, Sprock J, Perry W et al (2001) Impact of prepulse characteristics on the detection of sensorimotor gating deficits in schizophrenia. Schizophr Res 49:171–178

    Article  PubMed  CAS  Google Scholar 

  • Bristow LJ, Landon L, Saywell KL, Tricklebank MD (1995) The glycine/NMDA receptor antagonist, L-701,324 reverses isolation-induced deficits in prepulse inhibition in the rat. Psychopharmacology 118:230–232

    Article  PubMed  CAS  Google Scholar 

  • Bristow LJ, Flatman KL, Hutson PH, Kulagowski JJ, Leeson PD et al (1996a) The atypical neuroleptic profile of the glycine/N-methyl-d-aspartate receptor antagonist, L-701,324, in rodents. J Pharmacol Exp Ther 277:578–585

    PubMed  CAS  Google Scholar 

  • Bristow LJ, Hutson PH, Kulagowski JJ, Leeson PD, Matheson S et al (1996b) Anticonvulsant and behavioural profile of L-701,324, a potent, orally active antagonist at the glycine modulatory site on the N-methyl-d-aspartate receptor complex. J Pharamacol Exp Ther 279:491–501

    Google Scholar 

  • Curzon P, Decker MW (1998) Effects of phencyclidine (PCP) and MK-801 on sensorimotor gating in CD-1 mice. Prog Nuropharmacol Biol Psychiatry 22:129–146

    Article  CAS  Google Scholar 

  • Danysz W, Parsons CG (1998) Glycine and NMDA receptors: physiological significance and possible therapeutic applications. Pharmacol Rev 50:597–664

    PubMed  CAS  Google Scholar 

  • Depoortere R, Perrault G, Sanger DJ (1999) Prepulse inhibition of the startle reflex in rats: effects of compounds acting at various sites on the NMDA receptor complex. Behav Pharmacol 10:51–62

    Article  PubMed  CAS  Google Scholar 

  • D’Souza DC, Charney D, Krystal J (1995) Glycine site agonists of the NMDA receptor. A review. CNS Drug Rev 1:227–260

    Article  CAS  Google Scholar 

  • Duncun EJ, Madonick SH, Parwani A, Angrist B, Rajan R et al (2001) Clinical and sensorimotor gating effects of ketamine in normals. Neuropsychopharmacology 25:72–83

    Article  Google Scholar 

  • Dunlop DS, Neidle A (2005) Regulation of serine racemase activity by amino acids. Mol Brain Res 133:208–214

    Article  PubMed  CAS  Google Scholar 

  • Fukushima T, Kawai J, Imai K, Toyo’oka T (2004) Simultaneous determination of d- and l-serine in rat brain microdialysis sample using a column-switching HPLC with fluorimetric detection. Biomed Chromatogr 18:813–819

    Article  PubMed  CAS  Google Scholar 

  • Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR (2001) Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology (Berl) 156:117–154

    Article  CAS  Google Scholar 

  • Geyer MA, Mcllwain KL, Paylor R (2002) Mouse genetic models for prepulse inhibition: an early review. Mol Psychiatry 7:1039–1053

    Article  PubMed  CAS  Google Scholar 

  • Goff DC, Coyle JT (2001) The emerging role of glutamate in the pathophysiology and treatment of schizophrenia. Am J Psychiatry 158:1367–1377

    Article  PubMed  CAS  Google Scholar 

  • Goff DC, Henderson DC, Evins AE, Amico D (1999) A placebo-controlled crossover trial of d-cycloserine added to clozapine in patients with schizophrenia. Biol Psychiatry 45:512–514

    Article  PubMed  CAS  Google Scholar 

  • Goff DC, Lawrence H, Posever T, Shih V, Tsai G et al (2005) A six-month, placebo-controlled trail of d-cycloserine co-administered with conventional antipsychotics in schizophrenia patients. Psychopharmacology 179:144–150

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto K (2006) The NMDA receptor hypofunction hypothesis for schizophrenia and glycine modulatory sites on the NMDA receptors as potential therapeutic drugs. Clin Psychopharmacol Neurosci 4:3–10

    CAS  Google Scholar 

  • Hashimoto K, Fukushima T, Shimizu E, Komatsu N, Watanabe H et al (2003) Decreased serum levels of d-serine in patients with schizophrenia: evidence in support of the N-methyl-d-aspartate receptor hypofunction hypothesis of schizophrenia. Arch Gen Psychiatry 60:572–576

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto K, Okamura N, Shimizu E, Iyo M (2004) Glutamate hypothesis of schizophrenia and approach for possible therapeutic drugs. Curr Med Chem CNS Agents 4:147–154

    CAS  Google Scholar 

  • Hashimoto K, Engberg G, Shimizu E, Nordin C, Lindström LH, Iyo M (2005) Reduced d-serine to total serine ratio in the cerebrospinal fluid of drug naive schizophrenic patients. Prog Neuropsychopharmacol Biol Psychiatry 29:767–769

    Article  PubMed  CAS  Google Scholar 

  • Heresco-Levy U, Ermilov M, Lichtenberg P, Bar G, Javitt DC (2004a) High-dose glycine added to olanzapine and risperidone for the treatment of schizophrenia. Biol Psychiatry 55:165–171

    Article  PubMed  CAS  Google Scholar 

  • Heresco-Levy U, Javitt DC (2004b) Comparative effects of glycine and d-cycloserine on persistent negative symptoms in schizophrenia: a retrospective analysis. Schizophr Res 66:89–96

    Article  PubMed  Google Scholar 

  • Heresco-Levy U, Javitt DC, Ebstein R, Vass A, Lichtenberg P et al (2005) d-Serine efficacy as add-on pharmacotherapy to risperidone and olanzapine for treatment-refractory schizophrenia. Biol Psychiatry 57:577–585

    Article  PubMed  CAS  Google Scholar 

  • Heresco-Levy U, Bar G, Levin R, Ermilov M, Ebstein RP et al (2007) High glycine levels are associated with prepulse inhibition deficits in chronic schizophrenia patients. Schizophr Res 91:14–21

    Article  PubMed  Google Scholar 

  • Javitt DC, Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148:1301–1308

    PubMed  CAS  Google Scholar 

  • Javitt DC, Balla A, Sershen H, Lajtha A (1999) Reversal of phencyclidine-induced effects by glycine and glycine transport inhibitors. Biol Psychiatry 45:668–679

    Article  PubMed  CAS  Google Scholar 

  • Johansson C, Jackson DM, Zhang J, Svensson L (1995) Prepulse inhibition of acoustic startle, a measure of sensorigating: effects of antipsychotics and other agents in rats. Pharmacol Biochem Behav 52:649–654

    Article  PubMed  CAS  Google Scholar 

  • Karcz-Kubicha M, Wedzony K, Zajaczkowski W, Danysz W (1999) NMDA receptor antagonists acting at the glycineB site in rat models for antipsychotic-like activity. J Neural Transm 106:1189–1204

    Article  PubMed  CAS  Google Scholar 

  • Kato K, Shishido T, Ono M, Shishido K, Kobayashi M et al (2001) Glycine reduces novelty-and methamphetamine-induced locomotor activity in neonatal ventral hippocampal damaged rats. Neuropsychopharamacology 24:330–332

    Article  CAS  Google Scholar 

  • Kemp JA, Leeson PD (1993) The glycine site of the NMDA receptor-five years on. Trends Pharmacol Sci 14:20–25

    Article  PubMed  CAS  Google Scholar 

  • Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R et al (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 51:199–214

    PubMed  CAS  Google Scholar 

  • Lanthorn TH (1994) d-Cycloserine: agonist turned antagonist. Amino Acids 6:247–260

    Article  CAS  Google Scholar 

  • Le Pen G, Kew J, Alberati D, Borroni E, Heitz MP et al (2003) Prepulse inhibition deficits of the startle reflex in neonatal ventral hippocampal-lesioned rats: reversal by glycine and a glycine transporter inhibitor. Biol Psychiatry 54:1162–1170

    Article  PubMed  CAS  Google Scholar 

  • Lipina T, Labrie V, Weiner I, Roder J (2005) Modulators of the glycine site on NMDA receptors, D-serine and ALX 5407, display similar beneficial effects to clozapine in mouse models of schizophrenia. Psychopharmacology 179:54–67

    Article  PubMed  CAS  Google Scholar 

  • Lynch JW (2004) Molecular structure and function of the glycine receptor chloride channel. Physiol Rev 84:1051–1095

    Article  PubMed  CAS  Google Scholar 

  • Mansbach RS (1991) Effects of NMDA receptor ligands on sensorimotor gating in the rat. Eur J Pharmacol 202:61–66

    Article  PubMed  CAS  Google Scholar 

  • Millan MJ (2005) N-methyl-d-aspartate receptors as a target for improved antipsychotic agents: novel insights and clinical perspectives. Psychopharmacology 179:30–53

    Article  PubMed  CAS  Google Scholar 

  • Nilsson M, Carlsson A, Carlsson ML (1997) Glycine and d-serine decrease MK-801-induced hypoactivity in mice. J Neural Transm 104:1195–1205

    Article  PubMed  CAS  Google Scholar 

  • Obrenovitch TP, Zilkha E (1996) Inhibition of cortical depression by L701,324, a novel antagonist at the glycine site of the N-methyl-D-aspartate receptor complex. Br J Pharmacol 117:931–937

    PubMed  CAS  Google Scholar 

  • Obrenovitch TP, Hardy AM, Zilkha E (1997) Effects of L701,324, a high-affinity antagonist at the N-methyl-d-aspartate (NMDA) receptor glycine site, on the rat electroencephalogram. Naunyn-Schmeidenberg’s Arch Pharmacol 355:779–786

    Article  CAS  Google Scholar 

  • Oldendorph WM (1971) Brain uptake of radio labeled amino acids and hexoses after arterial injection. Am J Physiol 224:1629–1639

    Google Scholar 

  • Popik P, Wrobel M, Nowak G (2000) Chronic treatment with antidepressants affects glycine/NMDA receptor function: behavioral evidence. Neuropharmacology 39:2278–2287

    Article  PubMed  CAS  Google Scholar 

  • Schell MJ, Molliver ME, Snyder SH (1995) d-Serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release. Proc Natl Acad Sci USA 92:3948–3952

    Article  PubMed  CAS  Google Scholar 

  • Strisovsky K, Jiraskova J, Mikulova A, Rulisek L, Konvalinka J (2005) Dual substrate and reaction specificity in mouse serine rasemase: identification of high-affinity substrate and inhibitors and analysis of the β-eliminase activity. Biochemistry 44:13091–13100

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow NR, Geyer MA (1998) Using an animal model of deficient sensorigating to study the pathophysiology and new treatments of schizophrenia. Schizophr Bull 24:285–301

    PubMed  CAS  Google Scholar 

  • Swerdlow NR, Braff DL, Taaid N, Geyer MA (1994) Assessing the validity of an animal model of deficient sensorimotor gating in schizophrenia patients. Arch Gen Psychiatry 51:139–154

    PubMed  CAS  Google Scholar 

  • Takahashi K, Hayashi F, Nishikawa T (1997) In vivo evidence for the link between l- and d-serine metabolism in rat cerebral cortex. J Neurochem 69:1286–1290

    Article  PubMed  CAS  Google Scholar 

  • Toth E, Lajtha A (1986) Antagonism of phencyclidine-induced hyperactivity by glycine in mice. Neurochem Res 11:393–400

    Article  PubMed  CAS  Google Scholar 

  • Tuominen HJ, Tiihonen J, Wahlbeck K (2005) Glutamatergic drugs for schizophrenia: a systematic review and meta-analysis. Schizophr Res 72:215–234

    Article  Google Scholar 

  • Verleysdonk S, Martin H, Willker W, Leibfritz D, Hamprecht B (1999) Rapid uptake and degradation of glycine by astroglial cells in culture: synthesis and release of serine and lactate. Glia 27:239–248

    Article  PubMed  CAS  Google Scholar 

  • Wolosker H, Sheth KN, Takahashi M, Mothet JP, Brady RO Jr et al (1999a) Purification of serine racemase: biosynthesis of the neuromodulator d-serine. Proc Natl Acad Sci U S A 96:721–725

    Article  PubMed  CAS  Google Scholar 

  • Wolosker H, Blackshaw S, Snyder SH (1999b) Serine racemase: a glial enzyme synthesizing d-serine to regulate glutamate-N-methyl-d-aspartate neurotransmission. Proc Natl Acad Sci U S A 96:13409–13414

    Article  PubMed  CAS  Google Scholar 

  • Yamada S, Harano M, Annoh N, Nakamura K, Tanaka M (1999) Involvement of serotonin 2A receptors in phencyclidine-induced disruption of prepulse inhibition of the acoustic startle in rats. Biol Psychiatry 46:832–838

    Article  PubMed  CAS  Google Scholar 

  • Yamada K, Ohnishi T, Hashimoto K, Ohba H, Iwayama-Shigeno Y et al (2005) Identification of multiple serine racemase (SRR) mRNA isoforms and genetic analyses of SRR and DAO in schizophrenia and D-serine levels. Biol Psychiatry 57:1493–1503

    Article  PubMed  CAS  Google Scholar 

  • Yee BK, Chang DT, Feldon J (2004) The effects of dizocilpine and phencyclidine on prepulse inhibition of the acoustic startle reflex and on prepulse-elicited reactivity in C57BL6 mice. Neuropsychopharmacology 29:1865–1877

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Meiji Pharmaceutical for providing 2 g of d-cycloserine. Funding for this study was partly provided by a grant from the Minister of Education, Culture, Sports, Science, and Technology of Japan (to E.S. and K.H.).

Conflict of interest statement

The authors declare no conflict of interest except for 2 g of d-cycloserine transferred from Meiji Pharmaceutical.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiji Shimizu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanahara, N., Shimizu, E., Ohgake, S. et al. Glycine and d-serine, but not d-cycloserine, attenuate prepulse inhibition deficits induced by NMDA receptor antagonist MK-801. Psychopharmacology 198, 363–374 (2008). https://doi.org/10.1007/s00213-008-1151-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-008-1151-6

Keywords

Navigation