Skip to main content
Log in

Nicotine self-administration in the rat: effects of hypocretin antagonists and changes in hypocretin mRNA

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The hypocretin (hcrt) system has been implicated in addiction-relevant effects of several drugs, but its role in nicotine dependence has been little studied.

Objectives

These experiments examined the role of the hcrt system in nicotine reinforcement.

Methods

Rats were trained for nicotine self-administration (NSA) on fixed-ratio schedules. The effects of acute, presession treatments with the hcrtR1 antagonist SB334867 and the hcrtR1/2 antagonist almorexant were examined on NSA maintained on a fixed-ratio (FR) 5 schedule. Gene expression for the hcrt system (mRNA for hcrt, hcrtR1, and hcrtR2) was measured in animals following NSA on a FR 1 schedule for a 19-day period.

Results

The hcrtR1 antagonist SB334867 and the hcrtR1/2 antagonist almorexant both reduced NSA dose-dependently (significantly at doses of 30 and 300 mg/kg, respectively); SB334867 did not affect food-maintained responding whereas almorexant (at the 300 mg/kg) did. Tissue from animals collected 5 h after self-administration showed an increase in hcrtR1 mRNA in the arcuate nucleus compared to control subjects. In tissue collected immediately after a similar 19-day self-administration period, mRNA for hcrtR1 was decreased in the rostral lateral hypothalamus compared to controls.

Conclusions

These data confirm a previous report (Hollander et al., Proc Natl Acad Sci U S A 105:19480–19485, 2008) that the hypocretin receptor hcrtR1 is activated in nicotine reinforcement and in addition show that both the arcuate nucleus and lateral hypothalamus are sites at which hcrt receptor mechanisms may influence reinforcement. Different patterns of mRNA expression at different times after NSA suggest that changes in the hcrt system may be labile with time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. We use the hypocretin nomenclature here.

References

  • Alderson HL, Latimer MP, Winn P (2006) Intravenous self-administration of nicotine is altered by lesions of the posterior, but not anterior, pedunculopontine tegmental nucleus. Eur J NeuroSci 23:2169–2175

    Article  PubMed  Google Scholar 

  • Aston-Jones G, Smith RJ, Moorman DE, Richardson KA (2009) Role of lateral hypothalamic orexin neurons in reward processing and addiction. Neuropharmacology 56(Suppl 1):112–121

    Article  CAS  PubMed  Google Scholar 

  • Bonci A, Borgland S (2009) Role of orexin/hypocretin and CRF in the formation of drug-dependent synaptic plasticity in the mesolimbic system. Neuropharmacology 56(Suppl 1):107–111

    Article  CAS  PubMed  Google Scholar 

  • Borgland SL, Chang SJ, Bowers MS, Thompson JL, Vittoz N, Floresco SB, Chou J, Chen BT, Bonci A (2009) Orexin A/hypocretin-1 selectively promotes motivation for positive reinforcers. J Neurosci 29:11215–11225

    Article  CAS  PubMed  Google Scholar 

  • Borgland SL, Taha SA, Sarti F, Fields HL, Bonci A (2006) Orexin A in the VTA is critical for the induction of synaptic plasticity and behavioral sensitization to cocaine. Neuron 49:589–601

    Article  CAS  PubMed  Google Scholar 

  • Boutrel B, Kenny PJ, Specio SE, Martin-Fardon R, Markou A, Koob GF, de Lecea L (2005) Role for hypocretin in mediating stress-induced reinstatement of cocaine-seeking behavior. Proc Natl Acad Sci USA 102:19168–19173

    Article  CAS  PubMed  Google Scholar 

  • Brisbare-Roch C, Dingemanse J, Koberstein R, Hoever P, Aissaoui H, Flores S, Mueller C, Nayler O, van Gerven J, de Haas SL, Hess P, Qiu C, Buchmann S, Scherz M, Weller T, Fischli W, Clozel M, Jenck F (2007) Promotion of sleep by targeting the orexin system in rats, dogs and humans. Nat Med 13:150–155

    Article  CAS  PubMed  Google Scholar 

  • Brischoux F, Mainville L, Jones BE (2008) Muscarinic-2 and orexin-2 receptors on GABAergic and other neurons in the rat mesopontine tegmentum and their potential role in sleep-wake state control. J Comp Neurol 510:607–630

    Article  PubMed  Google Scholar 

  • Coen KM, Adamson KL, Corrigall WA (2009) Medication-related pharmacological manipulations of nicotine self-administration in the rat maintained on fixed- and progressive-ratio schedules of reinforcement. Psychopharmacology (Berl) 201:557–568

    Article  CAS  Google Scholar 

  • Comer SD, Turner DM, Carroll ME (1995) Effects of food deprivation on cocaine base smoking in rhesus monkeys. Psychopharmacology (Berl) 119:127–132

    Article  CAS  Google Scholar 

  • Corrigall WA (2009) Hypocretin mechanisms in nicotine addiction: evidence and speculation. Psychopharmacology (Berl) 206:23–37

    Article  CAS  Google Scholar 

  • Corrigall WA, Coen KM (1989) Nicotine maintains robust self-administration in rats on a limited-access schedule. Psychopharmacology (Berl) 99:473–478

    Article  CAS  Google Scholar 

  • Corrigall WA, Coen KM, Adamson KL (1994) Self-administered nicotine activates the mesolimbic dopamine system through the ventral tegmental area. Brain Res 653:278–284

    Article  CAS  PubMed  Google Scholar 

  • de Lecea L, Jones BE, Boutrel B, Borgland SL, Nishino S, Bubser M, DiLeone R (2006) Addiction and arousal: alternative roles of hypothalamic peptides. J Neurosci 26:10372–10375

    Article  PubMed  Google Scholar 

  • de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE, Fukuhara C, Battenberg EL, Gautvik VT, Bartlett FS 2nd, Frankel WN, van den Pol AN, Bloom FE, Gautvik KM, Sutcliffe JG (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci USA 95:322–327

    Article  PubMed  Google Scholar 

  • de Lecea L, Sutcliffe JG, Fabre V (2002) Hypocretins/orexins as integrators of physiological information: lessons from mutant animals. Neuropeptides 36:85–95

    Article  PubMed  Google Scholar 

  • Dugovic C, Shelton JE, Aluisio LE, Fraser IC, Jiang X, Sutton SW, Bonaventure P, Yun S, Li X, Lord B, Dvorak CA, Carruthers NI, Lovenberg TW (2009) Blockade of orexin-1 receptors attenuates orexin-2 receptor antagonism-induced sleep promotion in the rat. J Pharmacol Exp Ther 330:142–151

    Article  CAS  PubMed  Google Scholar 

  • Duxon MS, Stretton J, Starr K, Jones DN, Holland V, Riley G, Jerman J, Brough S, Smart D, Johns A, Chan W, Porter RA, Upton N (2001) Evidence that orexin-A-evoked grooming in the rat is mediated by orexin-1 (OX1) receptors, with downstream 5-HT2C receptor involvement. Psychopharmacology (Berl) 153:203–209

    Article  CAS  Google Scholar 

  • España RA, Oleson EB, Locke JL, Brookshire BR, Roberts DC, Jones SR (2010) The hypocretin–orexin system regulates cocaine self-administration via actions on the mesolimbic dopamine system. Eur J NeuroSci 31:336–348

    Article  PubMed  Google Scholar 

  • Georgescu D, Zachariou V, Barrot M, Mieda M, Willie JT, Eisch AJ, Yanagisawa M, Nestler EJ, DiLeone RJ (2003) Involvement of the lateral hypothalamic peptide orexin in morphine dependence and withdrawal. J Neurosci 23:3106–3111

    CAS  PubMed  Google Scholar 

  • Grace AA, Floresco SB, Goto Y, Lodge DJ (2007) Regulation of firing of dopaminergic neurons and control of goal-directed behaviors. Trends Neurosci 30:220–227

    Article  CAS  PubMed  Google Scholar 

  • Greco MA, Shiromani PJ (2001) Hypocretin receptor protein and mRNA expression in the dorsolateral pons of rats. Brain Res Mol Brain Res 88:176–182

    Article  CAS  PubMed  Google Scholar 

  • Harris GC, Aston-Jones G (2006) Arousal and reward: a dichotomy in orexin function. Trends Neurosci 29:571–577

    Article  CAS  PubMed  Google Scholar 

  • Harris GC, Wimmer M, Aston-Jones G (2005) A role for lateral hypothalamic orexin neurons in reward seeking. Nature 437:556–559

    Article  CAS  PubMed  Google Scholar 

  • Haynes AC, Jackson B, Chapman H, Tadayyon M, Johns A, Porter RA, Arch JRS (2000) A selective orexin-1 receptor antagonist reduces food consumption in male and female rats. Regul Pept 96:45–51

    Article  CAS  PubMed  Google Scholar 

  • Hollander JA, Lu Q, Cameron MD, Kamenecka TM, Kenny PJ (2008) Insular hypocretin transmission regulates nicotine reward. Proc Natl Acad Sci USA 105:19480–19485

    Article  CAS  PubMed  Google Scholar 

  • Horvath TL, Gao X-B (2005) Input organization and plasticity of hypocretin neurons: possible clues to obesity’s association with insomnia. Cell Metab 1:279–286

    Article  CAS  PubMed  Google Scholar 

  • Kane JK, Parker SL, Matta SG, Fu Y, Sharp BM, Li MD (2000) Nicotine up-regulates expression of orexin and its receptors in rat brain. Endocrinology 141:3623–3629

    Article  CAS  PubMed  Google Scholar 

  • Kilduff TS, Peyron C (2000) The hypocretin/orexin ligand–receptor system: implications for sleep and sleep disorders. Trends Neurosci 23:359–365

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Nakajima K, Oomura Y, Wayner MJ, Sasaki K (2009) Electrophysiological effects of orexins/hypocretins on pedunculopontine tegmental neurons in rats: an in vitro study. Peptides 30:191–209

    Article  CAS  PubMed  Google Scholar 

  • Koob GF (2006) The neurobiology of addiction: a neuroadaptational view relevant for diagnosis. Addiction 101(Suppl 1):23–30

    Article  PubMed  Google Scholar 

  • Koob GF (2008) A role for brain stress systems in addiction. Neuron 59:11–34

    Article  CAS  PubMed  Google Scholar 

  • Kotz CM (2006) Integration of feeding and spontaneous physical activity: role for orexin. Physiol Behav 88:294–301

    Article  CAS  PubMed  Google Scholar 

  • Kotz CM, Levine AS, Billington CJ (1997) Effect of naltrexone on feeding, neuropeptide Y and uncoupling protein gene expression during lactation. Neuroendocrinology 65:259–264

    Article  CAS  PubMed  Google Scholar 

  • Lambe EK, Olausson P, Horst NK, Taylor JR, Aghajanian GK (2005) Hypocretin and nicotine excite the same thalamocortical synapses in prefrontal cortex: correlation with improved attention in rat. J Neurosci 25:5225–5229

    Article  CAS  PubMed  Google Scholar 

  • Lança AJ, Adamson KL, Coen KM, Chow BL, Corrigall WA (2000) The pedunculopontine tegmental nucleus and the role of cholinergic neurons in nicotine self-administration in the rat: a correlative neuroanatomical and behavioral study. Neuroscience 96:735–742

    Article  PubMed  Google Scholar 

  • Laviolette SR, Alexson TO, van der Kooy D (2002) Lesions of the tegmental pedunculopontine nucleus block the rewarding effects and reveal the aversive effects of nicotine in the ventral tegmental area. J Neurosci 22:8653–8660

    CAS  PubMed  Google Scholar 

  • Lawrence AJ, Cowen MS, Yang HJ, Chen F, Oldfield B (2006) The orexin system regulates alcohol-seeking in rats. Br J Pharmacol 148:752–759

    Article  CAS  PubMed  Google Scholar 

  • LeSage MG, Burroughs D, Dufek M, Keyler DE, Pentel PR (2004) Reinstatement of nicotine self-administration in rats by presentation of nicotine-paired stimuli, but not nicotine priming. Pharmacol Biochem Behav 79:507–513

    Article  CAS  PubMed  Google Scholar 

  • Malherbe P, Borroni E, Gobbi L, Knust H, Nettekoven M, Pinard E, Roche O, Rogers-Evans M, Wettstein JG, Moreau JL (2009) Biochemical and behavioural characterization of EMPA, a novel high-affinity, selective antagonist for the OX(2) receptor. Br J Pharmacol 156:1326–1341

    Article  CAS  PubMed  Google Scholar 

  • Marcus JN, Aschkenasi CJ, Lee CE, Chemelli RM, Saper CB, Yanagisawa M, Elmquist JK (2001) Differential expression of orexin receptors 1 and 2 in the rat brain. J Comp Neurol 435:6–25

    Article  CAS  PubMed  Google Scholar 

  • Nair SG, Golden SA, Shaham Y (2008) Differential effects of the hypocretin 1 receptor antagonist SB 334867 on high-fat food self-administration and reinstatement of food seeking in rats. Br J Pharmacol 154:406–416

    Article  CAS  PubMed  Google Scholar 

  • Nambu T, Sakurai T, Mizukami K, Hosoya Y, Yanagisawa M, Goto K (1999) Distribution of orexin neurons in the adult rat brain. Brain Res 827:243–260

    Article  CAS  PubMed  Google Scholar 

  • Narita M, Nagumo Y, Hashimoto S, Narita M, Khotib J, Miyatake M, Sakurai T, Yanagisawa M, Nakamachi T, Shioda S, Suzuki T (2006) Direct involvement of orexinergic systems in the activation of the mesolimbic dopamine pathway and related behaviors induced by morphine. J Neurosci 26:398–405

    Article  CAS  PubMed  Google Scholar 

  • Pan WX, Hyland BI (2005) Pedunculopontine tegmental nucleus controls conditioned responses of midbrain dopamine neurons in behaving rats. J Neurosci 25:4725–4732

    Article  CAS  PubMed  Google Scholar 

  • Paneda C, Winsky-Sommerer R, Boutrel B, de Lecea L (2005) The corticotropin-releasing factor-hypocretin connection: implications in stress response and addiction. Drug News Perspect 18:250–255

    Article  CAS  PubMed  Google Scholar 

  • Pasumarthi RK, Fadel J (2008) Activation of orexin/hypocretin projections to basal forebrain and paraventricular thalamus by acute nicotine. Brain Res Bull 77:367–373

    Article  CAS  PubMed  Google Scholar 

  • Pasumarthi RK, Reznikov LR, Fadel J (2006) Activation of orexin neurons by acute nicotine. Eur J Pharmacol 535:172–176

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 4th edn. Academic, New York

    Google Scholar 

  • Peyron C, Tighe DK, van den Pol AN, de Lecea L, Heller HC, Sutcliffe JG, Kilduff TS (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18:9996–10015

    CAS  PubMed  Google Scholar 

  • Porter RA, Chan WN, Coulton S, Johns A, Hadley MS, Widdowson K, Jerman JC, Brough SJ, Coldwell M, Smart D, Jewitt F, Jeffrey P, Austin N (2001) 1, 3-Biarylureas as selective non-peptide antagonists of the orexin-1 receptor. Bioorg Med Chem Lett 11:1907–1910

    Article  CAS  PubMed  Google Scholar 

  • Richards JK, Simms JA, Steensland P, Taha SA, Borgland SL, Bonci A, Bartlett SE (2008) Inhibition of orexin-1/hypocretin-1 receptors inhibits yohimbine-induced reinstatement of ethanol and sucrose seeking in Long–Evans rats. Psychopharmacology (Berl) 199:109–117

    Article  CAS  Google Scholar 

  • Rodgers RJ, Halford JC, Nunes de Souza RL, Canto de Souza AL, Piper DC, Arch JR, Upton N, Porter RA, Johns A, Blundell JE (2001) SB-334867, a selective orexin-1 receptor antagonist, enhances behavioural satiety and blocks the hyperphagic effect of orexin-A in rats. Eur J NeuroSci 13:1444–1452

    Article  CAS  PubMed  Google Scholar 

  • Rodgers RJ, Ishii Y, Halford JC, Blundell JE (2002) Orexins and appetite regulation. Neuropeptides 36:303–325

    Article  CAS  PubMed  Google Scholar 

  • Ross JT, Corrigall WA, Heidbreder CA, LeSage MG (2007) Effects of the selective dopamine D3 receptor antagonist SB-277011A on the reinforcing effects of nicotine as measured by a progressive-ratio schedule in rats. Eur J Pharmacol 559:173–179

    Article  CAS  PubMed  Google Scholar 

  • Sakurai T (2007) The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat Rev Neurosci 8:171–181

    Article  CAS  PubMed  Google Scholar 

  • Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richardson JA, Kozlowski GP, Wilson S, Arch JR, Buckingham RE, Haynes AC, Carr SA, Annan RS, McNulty DE, Liu WS, Terrett JA, Elshourbagy NA, Bergsma DJ, Yanagisawa M (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92:573–585

    Article  CAS  PubMed  Google Scholar 

  • Siegel JM (2004) Hypocretin (orexin): role in normal behavior and neuropathology. Annu Rev Psychol 55:125–148

    Article  PubMed  Google Scholar 

  • Smith RJ, See RE, Aston-Jones G (2009) Orexin/hypocretin signaling at the orexin 1 receptor regulates cue-elicited cocaine-seeking. Eur J NeuroSci 30:493–503

    Article  PubMed  Google Scholar 

  • Sutcliffe JG, de Lecea L (2002) The hypocretins: setting the arousal threshold. Nat Rev Neurosci 3:339–349

    Article  CAS  PubMed  Google Scholar 

  • Trivedi P, Yu H, MacNeil DJ, Van der Ploeg LH, Guan XM (1998) Distribution of orexin receptor mRNA in the rat brain. FEBS Lett 438:71–75

    Article  CAS  PubMed  Google Scholar 

  • Winsky-Sommerer R, Boutrel B, de Lecea L (2005) Stress and arousal: the corticotrophin-releasing factor/hypocretin circuitry. Mol Neurobiol 32:285–294

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the Academic Health Center of the University of Minnesota (Corrigall PI), NIDA grant DA020136 (LeSage PI), and funding from the Department of Veterans Affairs (Kotz PI). We are grateful to Dr. David McKinzie of Eli Lilly and Company for the gift of SB334867 and to Drs. Francois Jenck and Catherine Brisbare-Roch of Actelion Pharmaceuticals Limited for the gift of almorexant. In addition, we acknowledge the expert technical assistance of Martha A. Grace, Jennifer A. Teske, Andrew Kotz, and Mark Margosian.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William A. Corrigall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

LeSage, M.G., Perry, J.L., Kotz, C.M. et al. Nicotine self-administration in the rat: effects of hypocretin antagonists and changes in hypocretin mRNA. Psychopharmacology 209, 203–212 (2010). https://doi.org/10.1007/s00213-010-1792-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-010-1792-0

Keywords

Navigation