Skip to main content

Advertisement

Log in

Functional topography of midbrain and pontine serotonergic systems: implications for synaptic regulation of serotonergic circuits

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Dysfunction of serotonergic systems is thought to play an important role in a number of neurological and psychiatric disorders. Recent studies suggest that there is anatomical and functional diversity among serotonergic systems innervating forebrain systems involved in the control of physiologic and behavioral responses, including the control of emotional states.

Objective

Here, we highlight the methods that have been used to investigate the heterogeneity of serotonergic systems and review the evidence for the unique anatomical, hodological, and functional properties of topographically organized subpopulations of serotonergic neurons in the midbrain and pontine raphe complex.

Conclusion

The emerging understanding of the topographically organized synaptic regulation of brainstem serotonergic systems, the topography of the efferent projections of these systems, and their functional properties, should enable identification of novel therapeutic approaches to treatment of neurological and psychiatric conditions that are associated with dysregulation of serotonergic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Abrams JK, Johnson PL, Hollis JH, Lowry CA (2004) Anatomical and functional topography of the dorsal raphe nucleus. Ann NY Acad Sci 1018:46–57

    PubMed  Google Scholar 

  • Abrams JK, Johnson PL, Hay-Schmidt A, Mikkelsen JD, Shekhar A, Lowry CA (2005) Serotonergic systems associated with arousal and vigilance behaviors following administration of anxiogenic drugs. Neuroscience 133:983–997

    CAS  PubMed  Google Scholar 

  • Adams W, Kusljic S, van den BM (2008) Serotonin depletion in the dorsal and ventral hippocampus: effects on locomotor hyperactivity, prepulse inhibition and learning and memory. Neuropharmacology 55:1048–1055

    CAS  PubMed  Google Scholar 

  • Amaral DG, Cowan WM (1980) Subcortical afferents to the hippocampal formation in the monkey. J Comp Neurol 189:573–591

    CAS  PubMed  Google Scholar 

  • Amat J, Tamblyn JP, Paul ED, Bland ST, Amat P, Foster AC, Watkins LR, Maier SF (2004) Microinjection of urocortin 2 into the dorsal raphe nucleus activates serotonergic neurons and increases extracellular serotonin in the basolateral amygdala. Neuroscience 129:509–519

    CAS  PubMed  Google Scholar 

  • Amat J, Baratta MV, Paul E, Bland ST, Watkins LR, Maier SF (2005) Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus. Nat Neurosci 8:365–371

    CAS  PubMed  Google Scholar 

  • Amat J, Paul E, Watkins LR, Maier SF (2008) Activation of the ventral medial prefrontal cortex during an uncontrollable stressor reproduces both the immediate and long-term protective effects of behavioral control. Neuroscience 154:1178–1186

    CAS  PubMed  Google Scholar 

  • Azmitia EC (1981) Bilateral serotonergic projections to the dorsal hippocampus of the rat: simultaneous localization of 3H-5HT and HRP after retrograde transport. J Comp Neurol 203:737–743

    CAS  PubMed  Google Scholar 

  • Azmitia EC, Gannon PJ (1986a) The primate serotonergic system: a review of human and animal studies and a report on Macaca fascicularis. In: Fahn S (ed) Myoclonus. Raven, New York, pp 407–468

    Google Scholar 

  • Azmitia EC, Gannon PJ (1986b) Anatomy of the serotonergic system in the primate and sub-primate brain. Adv In Neurol 43:407–468

    CAS  Google Scholar 

  • Azmitia EC Jr, Segal M (1978) An autoradiographic analysis of the differential ascending projection of the dorsal and median raphe nuclei in the rat. J Comp Neurol 179:651–668

    Google Scholar 

  • Bach-Mizrachi H, Underwood MD, Kassir SA, Bakalian MJ, Sibille E, Tamir H, Mann JJ, Arango V (2006) Neuronal tryptophan hydroxylase mRNA expression in the human dorsal and median raphe nuclei: major depression and suicide. Neuropsychopharmacology 31:814–824

    CAS  PubMed  Google Scholar 

  • Bach-Mizrachi H, Underwood MD, Tin A, Ellis SP, Mann JJ, Arango V (2008) Elevated expression of tryptophan hydroxylase-2 mRNA at the neuronal level in the dorsal and median raphe nuclei of depressed suicides. Mol Psychiatry 13:507–513

    CAS  PubMed  Google Scholar 

  • Bago M, Marson L, Dean C (2002) Serotonergic projections to the rostroventrolateral medulla from midbrain and raphe nuclei. Brain Res 945:249–258

    CAS  PubMed  Google Scholar 

  • Bale TL, Contarino A, Smith GW, Chan R, Gold LH, Sawchenko PE, Koob GF, Vale WW, Lee KF (2000) Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behaviour and are hypersensitive to stress. Nat Genet 24:410–414

    CAS  PubMed  Google Scholar 

  • Banasr M, Hery M, Printemps R, Daszuta A (2004) Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the dentate gyrus and the subventricular zone. Neuropsychopharmacology 29:450–460

    CAS  PubMed  Google Scholar 

  • Bandler R, Keay KA, Floyd N, Price J (2000) Central circuits mediating patterned autonomic activity during active vs. passive emotional coping. Brain Res Bull 53:95–104

    CAS  PubMed  Google Scholar 

  • Baratta MV, Zarza CM, Gomez DM, Campeau S, Watkins LR, Maier SF (2009) Selective activation of dorsal raphe nucleus-projecting neurons in the ventral medial prefrontal cortex by controllable stress. Eur J Neurosci 30:1111–1116

    PubMed  Google Scholar 

  • Bass CE, Grinevich VP, Vance ZB, Sullivan RP, Bonin KD, Budygin EA (2010) Optogenetic control of striatal dopamine release in rats. J Neurochem 114:1344–1352

    CAS  PubMed  Google Scholar 

  • Baxter DW, Olszewaski J (1955) Respiratory responses evoked by electrical stimulation of pons and mesencephalon. J Neurophysiol 18:276–287

    CAS  PubMed  Google Scholar 

  • Beck SG, Pan YZ, Akanwa AC, Kirby LG (2004) Median and dorsal raphe neurons are not electrophysiologically identical. J Neurophysiol 91:994–1005

    PubMed  Google Scholar 

  • Beitz AJ (1982) The sites of origin of brain stem neurotensin and serotonin projections to the rodent nucleus raphe magnus. J Neurosci 2:829–842

    CAS  PubMed  Google Scholar 

  • Bendotti C, Samanin R (1986) 8-Hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) elicits eating in free-feeding rats by acting on central serotonin neurons. Eur J Pharmacol 121:147–150

    CAS  PubMed  Google Scholar 

  • Bobillier P, Seguin S, Dugueurce A, Lewis BD, Pujol JF (1979) The efferent connections of the nucleus raphe centralis superior in the rat as revealed by autoradiography. Brain Res 166:1–8

    CAS  PubMed  Google Scholar 

  • Boldrini M, Underwood MD, Mann JJ, Arango V (2005) More tryptophan hydroxylase in the brainstem dorsal raphe nucleus in depressed suicides. Brain Res 1041:19–28

    CAS  PubMed  Google Scholar 

  • Bonkale WL, Turecki G, Austin MC (2006) Increased tryptophan hydroxylase immunoreactivity in the dorsal raphe nucleus of alcohol-dependent, depressed suicide subjects is restricted to the dorsal subnucleus. Synapse 60:81–85

    CAS  PubMed  Google Scholar 

  • Bouwknecht JA, Spiga F, Staub DR, Hale MW, Shekhar A, Lowry CA (2007) Differential effects of exposure to low-light or high-light open-field on anxiety-related behaviors: relationship to c-Fos expression in serotonergic and non-serotonergic neurons in the dorsal raphe nucleus. Brain Res Bull 72:32–43

    CAS  PubMed  Google Scholar 

  • Brezun JM, Daszuta A (1999) Depletion in serotonin decreases neurogenesis in the dentate gyrus and the subventricular zone of adult rats. Neuroscience 89:999–1002

    CAS  PubMed  Google Scholar 

  • Canteras NS, Shammah-Lagnado SJ, Silva BA, Ricardo JA (1990) Afferent connections of the subthalamic nucleus: a combined retrograde and anterograde horseradish peroxidase study in the rat. Brain Res 513:43–59

    CAS  PubMed  Google Scholar 

  • Celada P, Puig MV, Casanovas JM, Guillazo G, Artigas F (2001) Control of dorsal raphe serotonergic neurons by the medial prefrontal cortex: involvement of serotonin-1A, GABA(A), and glutamate receptors. J Neurosci 21:9917–9929

    CAS  PubMed  Google Scholar 

  • Chen J, Zeng SL, Rao ZR, Shi JW (1992) Serotonergic projections from the midbrain periaqueductal gray and nucleus raphe dorsalis to the nucleus parafascicularis of the thalamus. Brain Res 584:294–298

    CAS  PubMed  Google Scholar 

  • Christianson JP, Thompson BM, Watkins LR, Maier SF (2009) Medial prefrontal cortical activation modulates the impact of controllable and uncontrollable stressor exposure on a social exploration test of anxiety in the rat. Stress 12:445–450

    PubMed  Google Scholar 

  • Christianson JP, Ragole T, Amat J, Greenwood BN, Strong PV, Paul ED, Fleshner M, Watkins LR, Maier SF (2010) 5-Hydroxytryptamine 2C receptors in the basolateral amygdala are involved in the expression of anxiety after uncontrollable traumatic stress. Biol Psychiatry 67:339–345

    CAS  PubMed  Google Scholar 

  • Clark MS, McDevitt RA, Neumaier JF (2006) Quantitative mapping of tryptophan hydroxylase-2, 5-HT1A, 5-HT1B, and serotonin transporter expression across the anteroposterior axis of the rat dorsal and median raphe nuclei. J Comp Neurol 498:611–623

    CAS  PubMed  Google Scholar 

  • Clark MS, McDevitt RA, Hoplight BJ, Neumaier JF (2007) Chronic low dose ovine corticotropin releasing factor or urocortin II into the rostral dorsal raphe alters exploratory behavior and serotonergic gene expression in specific subregions of the dorsal raphe. Neuroscience 146:1888–1905

    CAS  PubMed  Google Scholar 

  • Coffield JA, Bowen KK, Miletic V (1992) Retrograde tracing of projections between the nucleus submedius, the ventrolateral orbital cortex, and the midbrain in the rat. J Comp Neurol 321:488–499

    CAS  PubMed  Google Scholar 

  • Commons KG, Connolley KR, Valentino RJ (2003) A neurochemically distinct dorsal raphe-limbic circuit with a potential role in affective disorders. Neuropsychopharmacology 28:206–215

    CAS  PubMed  Google Scholar 

  • Coste SC, Kesterson RA, Heldwein KA, Stevens SL, Heard AD, Hollis JH, Murray SE, Hill JK, Pantely GA, Hohimer AR, Hatton DC, Phillips TJ, Finn DA, Low MJ, Rittenberg MB, Stenzel P, Stenzel-Poore MP (2000) Abnormal adaptations to stress and impaired cardiovascular function in mice lacking corticotropin-releasing hormone receptor-2. Nat Genet 24:403–409

    CAS  PubMed  Google Scholar 

  • Crawford LK, Craige CP, Beck SG (2010) Increased intrinsic excitability of lateral wing serotonin neurons of the dorsal raphe: a mechanism for selective activation in stress circuits. J Neurophysiol 103:2652–2663

    CAS  PubMed  Google Scholar 

  • Currie PJ, Coscina DV (1993) Diurnal variations in the feeding response to 8-OH-DPAT injected into the dorsal or median raphe. NeuroReport 4:1105–1107

    CAS  PubMed  Google Scholar 

  • Dahlstrom A, Fuxe K (1964a) Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand (Suppl) 232:1–55

    Google Scholar 

  • Dahlstrom A, Fuxe K (1964b) Localization of monoamines in the lower brain stem. Experientia 20:398–399

    CAS  PubMed  Google Scholar 

  • Datiche F, Luppi P-H, Cattarelli M (1995) Serotonergic and nonserotonergic projections from the raphe nuclei to the piriform cortex in the rat-a cholera toxin B subunit (CTB) and 5-HT immunohistochemical study. Brain Res 671:27–37

    CAS  PubMed  Google Scholar 

  • Day HE, Greenwood BN, Hammack SE, Watkins LR, Fleshner M, Maier SF, Campeau S (2004) Differential expression of 5HT-1A, alpha(1b) adrenergic, CRF-R1, and CRF-R2 receptor mRNA in serotonergic, gamma-aminobutyric acidergic, and catecholaminergic cells of the rat dorsal raphe nucleus. J Comp Neurol 474:364–378

    CAS  PubMed  Google Scholar 

  • de Olmos J, Heimer L (1980) Double and triple labeling of neurons with fluorescent substances; the study of collateral pathways in the ascending raphe system. Neurosci Lett 19:7–12

    PubMed  Google Scholar 

  • Deakin JFW (1996) 5-HT, antidepressant drugs and the psychosocial origins of depression. J Psychopharmacol 10:31–38

    CAS  Google Scholar 

  • Descarries L, Berthelet F, Garcia S, Beaudet A (1986) Dopaminergic projection from nucleus raphe dorsalis to neostriatum in the rat. J Comp Neurol 249:511–520

    CAS  PubMed  Google Scholar 

  • Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–716

    CAS  PubMed  Google Scholar 

  • Donner N, Handa RJ (2009) Estrogen receptor beta regulates the expression of tryptophan-hydroxylase 2 mRNA within serotonergic neurons of the rat dorsal raphe nuclei. Neuroscience 163:705–718

    CAS  PubMed  Google Scholar 

  • Drevets WC, Price JL, Furey ML (2008) Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct Funct 213:93–118

    PubMed  Google Scholar 

  • Evans AK, Heerkens JL, Lowry CA (2009) Acoustic stimulation in vivo and corticotropin-releasing factor in vitro increase tryptophan hydroxylase activity in the rat caudal dorsal raphe nucleus. Neurosci Lett 455:36–41

    CAS  PubMed  Google Scholar 

  • Fite KV, Janusonis S, Foote W, Bengston L (1999) Retinal afferents to the dorsal raphe nucleus in rats and Mongolian gerbils. J Comp Neurol 414:469–484

    CAS  PubMed  Google Scholar 

  • Fornal CA, Metzler CW, Marrosu F, Ribiero-do-Valle LE, Jacobs BL (1996) A subgroup of dorsal raphe serotonergic neurons in the cat is strongly activated during oral–buccal movements. Brain Res 716:123–133

    CAS  PubMed  Google Scholar 

  • Forster GL, Pringle RB, Mouw NJ, Vuong SM, Watt MJ, Burke AR, Lowry CA, Summers CH, Renner KJ (2008) Corticotropin-releasing factor in the dorsal raphe nucleus increases medial prefrontal cortical serotonin via type 2 receptors and median raphe nucleus activity. Eur J Neurosci 28:299–310

    PubMed  Google Scholar 

  • Fuxe K, Cintra A, Harfstrand A, Agnati LF, Kalia M, Zoli M, Wikstrom AC, Okret S, Aronsson M, Gustafsson JA (1987) Central glucocorticoid receptor immunoreactive neurons: new insights into the endocrine regulation of the brain. Ann N Y Acad Sci 512:362–393

    CAS  PubMed  Google Scholar 

  • Gardner KL, Thrivikraman KV, Lightman SL, Plotsky PM, Lowry CA (2005) Early life experience alters behavior during social defeat: focus on serotonergic systems. Neuroscience 136:181–191

    CAS  PubMed  Google Scholar 

  • Gardner KL, Hale MW, Lightman SL, Plotsky PM, Lowry CA (2009a) Adverse early life experience and social stress during adulthood interact to increase serotonin transporter mRNA expression. Brain Res 1305:47–63

    CAS  PubMed  Google Scholar 

  • Gardner KL, Hale MW, Oldfield S, Lightman SL, Plotsky PM, Lowry CA (2009b) Adverse experience during early life and adulthood interact to elevate tph2 mRNA expression in serotonergic neurons within the dorsal raphe nucleus. Neuroscience 163:991–1001

    CAS  PubMed  Google Scholar 

  • Geyer MA, Puerto A, Dawsey WJ, Knapp S, Bullard WP, Mandell AJ (1976) Histologic and enzymatic studies of the mesolimbic and mesostriatal serotonergic pathways. Brain Res 106:241–256

    CAS  PubMed  Google Scholar 

  • Goncalves L, Nogueira MI, Shammah-Lagnado SJ, Metzger M (2009) Prefrontal afferents to the dorsal raphe nucleus in the rat. Brain Res Bull 78:240–247

    PubMed  Google Scholar 

  • Gonzalez-Maeso J, Sealfon SC (2009) Psychedelics and schizophrenia. Trends Neurosci 32:225–232

    CAS  PubMed  Google Scholar 

  • Graeff FG, Guimaraes FS, De Andrade TG, Deakin JF (1996) Role of 5-HT in stress, anxiety, and depression. Pharmacol Biochem Behav 54:129–141

    CAS  PubMed  Google Scholar 

  • Grahn RE, Will MJ, Hammack SE, Maswood S, McQueen MB, Watkins LR, Maier SF (1999) Activation of serotonin-immunoreactive cells in the dorsal raphe nucleus in rats exposed to an uncontrollable stressor. Brain Res 826:35–43

    CAS  PubMed  Google Scholar 

  • Gray TS, Magnuson DJ (1987) Galanin-like immunoreactivity within amygdaloid and hypothalamic neurons that project to the midbrain central grey in rat. Neurosci Lett 83:264–268

    CAS  PubMed  Google Scholar 

  • Gray TS, Magnuson DJ (1992) Peptide immunoreactive neurons in the amygdala and the bed nucleus of the stria terminalis project to the midbrain central gray in the rat. Peptides 13:451–460

    CAS  PubMed  Google Scholar 

  • Greenwood BN, Foley TE, Day HEW, Campisi J, Hammack SH, Campeau S, Maier SF, Fleshner M (2003) Freewheel running prevents learned helplessness/behavioral depression: role of dorsal raphe serotonergic neurons. J Neurosci 23:2889–2898

    CAS  PubMed  Google Scholar 

  • Greenwood BN, Foley TE, Day HEW, Burhans D, Brooks L, Campeau S, Fleshner M (2005) Wheel running alters serotonin (5-HT) transporter, 5-HT1A, 5-HT1B, and alpha1b-adrenergic receptor mRNA in the rat raphe nuclei. Biol Psychiatry 57:559–568

    CAS  PubMed  Google Scholar 

  • Groenewegen HJ (1988) Organization of the afferent connections of the mediodorsal thalamic nucleus in the rat, related to the mediodorsal–prefrontal topography. Neuroscience 24:379–431

    CAS  PubMed  Google Scholar 

  • Groenewegen HJ, Ahlenius S, Haber SN, Kowall NW, Nauta WJH (1986) Cytoarchitecture, fiber connections, and some histochemical aspects of the interpeduncular nucleus in the rat. J Comp Neurol 249:65–102

    CAS  PubMed  Google Scholar 

  • Grove EA (1988) Neural associations of the substantia innominata in the rat: afferent connections. J Comp Neurol 277:315–346

    CAS  PubMed  Google Scholar 

  • Guiard BP, Guilloux JP, Reperant C, Hunt SP, Toth M, Gardier AM (2007) Substance P neurokinin 1 receptor activation within the dorsal raphe nucleus controls serotonin release in the mouse frontal cortex. Mol Pharmacol 72:1411–1418

    CAS  PubMed  Google Scholar 

  • Hajos M, Richards CD, Szekely AD, Sharp T (1998) An electrophysiological and neuroanatomical study of the medial prefrontal cortical projection to the midbrain raphe nuclei in the rat. Neuroscience 87:95–108

    CAS  PubMed  Google Scholar 

  • Hale MW, Hay-Schmidt A, Mikkelsen JD, Poulsen B, Bouwknecht JA, Evans AK, Stamper CE, Shekhar A, Lowry CA (2008) Exposure to an open-field arena increases c-Fos expression in a subpopulation of neurons in the dorsal raphe nucleus, including neurons projecting to the basolateral amygdaloid complex. Neuroscience 157:733–748

    CAS  PubMed  Google Scholar 

  • Hale MW, Johnson PL, Westerman AM, Abrams JK, Shekhar A, Lowry CA (2010a) Multiple anxiogenic drugs recruit a parvalbumin-containing subpopulation of GABAergic interneurons in the basolateral amygdala. Prog Neuropsychopharmacol Biol Psychiatry 34:1285–1293

    CAS  PubMed  Google Scholar 

  • Hale MW, Stamper CE, Staub DR, Lowry CA (2010b) Urocortin 2 increases c-Fos expression in serotonergic neurons projecting to the ventricular/periventricular system. Exp Neurol 224:271–281

    CAS  PubMed  Google Scholar 

  • Hammack SE, Richey KJ, Schmid MJ, LoPresti ML, Watkins LR, Maier SF (2002) The role of corticotropin-releasing hormone in the dorsal raphe nucleus in mediating the behavioral consequences of uncontrollable stress. J Neurosci 22:1020–1026

    CAS  PubMed  Google Scholar 

  • Hammack SE, Schmid MJ, LoPresti ML, Der-Avakian A, Pellymounter MA, Foster AC, Watkins LR, Maier SF (2003) Corticotropin releasing hormone type 2 receptors in the dorsal raphe nucleus mediate the behavioral consequences of uncontrollable stress. J Neurosci 23:1019–1025

    CAS  PubMed  Google Scholar 

  • Hammer K-H, Klinberg F (1990) Active avoidance is permanently abolished after lesions of the nucleus interpeduncularis in rat. Biomed Biochim Acta 49:489–497

    CAS  PubMed  Google Scholar 

  • Hammer K-H, Klingberg F (1991) Disturbance of brightness discrimination and active avoidance learning after lesions of nucleus reticularis tegmenti pontis (NRTP) of rats are related to impairment of goal-directed behavior. Biomed Biochim Acta 50:169–174

    CAS  PubMed  Google Scholar 

  • Herbert H (1992) Evidence for projections from medullary nuclei onto serotonergic and dopaminergic neurons in the midbrain dorsal raphe nucleus of the rat. Cell Tissue Res 270:149–156

    CAS  PubMed  Google Scholar 

  • Herbert J, Saper CB (1992) Organization of medullary adrenergic and noradrenergic projections to the periaqueductal gray matter in the rat. J Comp Neurol 315:34–52

    CAS  PubMed  Google Scholar 

  • Hioki H, Nakamura H, Ma YF, Konno M, Hayakawa T, Nakamura KC, Fujiyama F, Kaneko T (2010) Vesicular glutamate transporter 3-expressing nonserotonergic projection neurons constitute a subregion in the rat midbrain raphe nuclei. J Comp Neurol 518:668–686

    CAS  PubMed  Google Scholar 

  • Hiroi R, Neumaier JF (2009) Estrogen decreases 5-HT(1B) autoreceptor mRNA in selective subregion of rat dorsal raphe nucleus: inverse association between gene expression and anxiety behavior in the open field. Neuroscience 158(2):456–464

    CAS  PubMed  Google Scholar 

  • Hiroi R, McDevitt RA, Neumaier JF (2006) Estrogen selectively increases tryptophan hydroxylase-2 mRNA expression in distinct subregions of rat midbrain raphe nucleus: association between gene expression and anxiety behavior in the open field. Biol Psychiatry 60:288–295

    CAS  PubMed  Google Scholar 

  • Hobson JA, Lydic R, Baghdoyan HA (1986) Evolving concepts of sleep cycle generation: from brain centers to neuronal populations. Behav Brain Sci 9:371–448

    Google Scholar 

  • Hollis JH, Evans AK, Bruce KP, Lightman SL, Lowry CA (2006) Lipopolysaccharide has indomethacin-sensitive actions on Fos expression in topographically organized subpopulations of serotonergic neurons. Brain Behav Immun 20:569–577

    CAS  PubMed  Google Scholar 

  • Holstege G (1995) The basic, somatic, and emotional components of the motor system in mammals. In: Paxinos G (ed) The rat nervous system. Academic, San Diego, pp 137–154

    Google Scholar 

  • Holstege G, Meiners L, Tan K (1985) Projections of the bed nucleus of the stria terminalis to the mesencephalon, pons, and medulla oblongata in the cat. Exp Brain Res 58:379–391

    CAS  PubMed  Google Scholar 

  • Hsu SY, Hsueh AJ (2001) Human stresscopin and stresscopin-related peptide are selective ligands for the type 2 corticotropin-releasing hormone receptor. Nat Med 7:605–611

    CAS  PubMed  Google Scholar 

  • Hurley KM, Herbert H, Moga MM, Saper CB (1991) Efferent projections of the infralimbic cortex of the rat. J Comp Neurol 308:249–276

    CAS  PubMed  Google Scholar 

  • Imai H, Park MR, Steindler DA, Kitai ST (1986a) The morphology and divergent axonal organization of midbrain raphe projection neurons in the rat. Brain Dev 8:343–354

    CAS  PubMed  Google Scholar 

  • Imai H, Steindler DA, Kitai ST (1986b) The organization of divergent axonal projections from the midbrain raphe nuclei in the rat. J Comp Neurol 243:363–380

    CAS  PubMed  Google Scholar 

  • Jacobs BL, Azmitia EC (1992) Structure and function of the brain serotonin system. Physiol Rev 72:165–229

    CAS  PubMed  Google Scholar 

  • Janusonis S, Fite KV, Foote W (1999) Topographic organization of serotonergic dorsal raphe neurons projecting to the superior colliculus in the Mongolian gerbil (Meriones unguiculatus). J Comp Neurol 413:342–355

    CAS  PubMed  Google Scholar 

  • Jensen P, Farago AF, Awatramani RB, Scott MM, Deneris ES, Dymecki SM (2008) Redefining the serotonergic system by genetic lineage. Nat Neurosci 11:417–419

    CAS  PubMed  Google Scholar 

  • Johnson PL, Hollis JH, Moratalla R, Lightman SL, Lowry CA (2005) Acute hypercarbic gas exposure reveals functionally distinct subpopulations of serotonergic neurons in rats. J Psychopharmacol 19:327–341

    CAS  PubMed  Google Scholar 

  • Johnson PL, Lowry CA, Truitt W, Shekhar A (2008) Disruption of GABAergic tone in the dorsomedial hypothalamus attenuates responses in a subset of serotonergic neurons in the dorsal raphe nucleus following lactate-induced panic. J Psychopharmacol 22:642–645

    CAS  PubMed  Google Scholar 

  • Jolas T, Aghajanian GK (1997) Opioids suppress spontaneous and NMDA-induced inhibitory postsynaptic currents in the dorsal raphe nucleus of the rat in vitro. Brain Res 755:229–245

    CAS  PubMed  Google Scholar 

  • Jones BE (1995) Reticular formation: cytoarchitecture, transmitters, and projections. In: The rat nervous system. Academic, New York, pp 155–171

    Google Scholar 

  • Jones BE, Cuello AC (1989) Afferents to the basal forebrain cholinergic cell area from pontomesencephalic-catecholamine, serotonin, and acetylcholine-neurons. Neuroscience 31:37–61

    CAS  PubMed  Google Scholar 

  • Kawano H, Decker K, Reuss S (1996) Is there a direct retina–raphe–suprachiasmatic nucleus pathway in the rat? Neurosci Lett 212:143–146

    CAS  PubMed  Google Scholar 

  • Kazakov VN, Kravtsov PYa, Krakhotkina ED, Maisky VA (1993) Sources of cortical, hypothalamic and spinal serotonergic projections: topical organization within the nucleus raphe dorsalis. Neuroscience 56:157–164

    CAS  PubMed  Google Scholar 

  • Kerman IA, Shabrang C, Taylor L, Akil H, Watson SJ (2006) Relationship of presympathetic-premotor neurons to the serotonergic transmitter system in the rat brainstem. J Comp Neurol 499:882–896

    CAS  PubMed  Google Scholar 

  • Kim DO, Yang XM, Ye Y (2003) A subpopulation of dorsal raphe nucleus neurons retrogradely labeled with cholera toxin-B injected into the inner ear. Exp Brain Res 153:514–521

    CAS  PubMed  Google Scholar 

  • Kim MA, Lee HS, Lee BY, Waterhouse BD (2004) Reciprocal connections between subdivisions of the dorsal raphe and the nuclear core of the locus coeruleus in the rat. Brain Resh 1026:56–67

    Google Scholar 

  • Kirifides ML, Simpson KL, Lin RC, Waterhouse BD (2001) Topographic organization and neurochemical identity of dorsal raphe neurons that project to the trigeminal somatosensory pathway in the rat. J Comp Neurol 435:325–340

    CAS  PubMed  Google Scholar 

  • Klitenick MA, Wirtshafter D (1988) Comparative studies of the ingestive behaviors produced by microinjections of muscimol into the midbrain raphe nuclei of the ventral tegmental area of the rat. Life Sci 42:775–782

    CAS  PubMed  Google Scholar 

  • Klitenick MA, Wirtshafter D (1989) Elicitation of feeding, drinking, and gnawing following microinjections of muscimol into the median raphe nucleus of rats. Behav Neural Biol 51:436–441

    CAS  PubMed  Google Scholar 

  • Kobayashi Y, Matsuyama K, Mori S (1994) Distribution of serotonin cells projecting to the pontomedullary reticular formation in the cat. Neurosci Res 20:43–55

    CAS  PubMed  Google Scholar 

  • Koh T, Nakazawa M, Kani K, Maeda T (1991) Significant non-serotonergic raphe projection to the visual cortex. J Hirnforsch 6:707–714

    Google Scholar 

  • Kohler C, Steinbusch H (1982) Identification of serotonin and non-serotonin-containing neurons of the mid-brain raphe projecting to the entorhinal area and the hippocampal formation. A combined immunohistochemical and fluorescent retrograde tracing study in the rat brain. Neuroscience 7:951–975

    CAS  PubMed  Google Scholar 

  • Kohler C, Chan-Palay V, Steinbusch H (1982) The distribution and origin of serotonin-containing fibers in the septal area: a combined immunohistochemical and fluorescent retrograde tracing study in the rat. J Comp Neurol 209:91–111

    CAS  PubMed  Google Scholar 

  • Köhler C, Chan-Palay V, Steinbusch H (1982) The distribution and origin of serotonin-containing fibers in the septal area: a combined immunohistochemical and fluorescent retrograde tracing study in the rat. J Comp Neurol 209:91–111

    PubMed  Google Scholar 

  • Krout KE, Belzer RE, Loewy AD (2002) Brainstem projections to midline and intralaminar thalamic nuclei of the rat. J Comp Neurol 448:53–101

    PubMed  Google Scholar 

  • Le AD, Funk D, Harding S, Juzytsch W, Li Z, Fletcher PJ (2008) Intra-median raphe nucleus (MRN) infusions of muscimol, a GABA-A receptor agonist, reinstate alcohol seeking in rats: role of impulsivity and reward. Psychopharmacology (Berl) 195:605–615

    Google Scholar 

  • Lee HS, Kim MA, Valentino RJ, Waterhouse BD (2003) Glutamatergic afferent projections to the dorsal raphe nucleus of the rat. Brain Res 963:57–71

    CAS  PubMed  Google Scholar 

  • Li Y-Q, Jai H-G, Rao Z-R, Shi J-W (1990) Serotonin-, substance P- or leucine-enkephalin-containing neurons in the midbrain periaqueductal gray and nucleus raphe dorsalis send projection fibers to the central amygdaloid nucleus in the rat. Neurosci Lett 120:124–127

    CAS  PubMed  Google Scholar 

  • Lind RW (1986) Bi-directional, chemically specified neural connections between the subfornical organ and the midbrain raphe system. Brain Res 384:250–261

    CAS  PubMed  Google Scholar 

  • Ljubic-Thibal V, Morin A, Diksic M, Hamel E (1999) Origin of the serotonergic innervation to the rat dorsolateral hypothalamus: retrograde transport of cholera toxin and upregulation of tryptophan hydroxylase mRNA expression following selective nerve terminals lesion. Synapse 32:177–186

    CAS  PubMed  Google Scholar 

  • Lowry CA (2002) Functional subsets of serotonergic neurones: implications for control of the hypothalamic–pituitary–adrenal axis. J Neuroendocrinol 14:911–923

    CAS  PubMed  Google Scholar 

  • Lowry CA, Johnson PL, Hay-Schmidt A, Mikkelsen J, Shekhar A (2005) Modulation of anxiety circuits by serotonergic systems. Stress 8:233–246

    CAS  PubMed  Google Scholar 

  • Lowry CA, Hollis JH, de Vries A, Pan B, Brunet LR, Hunt JR, Paton JF, van Kampen E, Knight DM, Evans AK, Rook GA, Lightman SL (2007) Identification of an immune-responsive mesolimbocortical serotonergic system: potential role in regulation of emotional behavior. Neuroscience 146:756–772

    CAS  PubMed  Google Scholar 

  • Lowry CA, Evans AK, Gasser PJ, Hale MW, Staub DR, Shekhar A (2008a) Topographical organization and chemoarchitecture of the dorsal raphe nucleus and the median raphe nucleus. In: Monti JM, Pandi-Perumal BL, Jacobs BL, Nutt DL (eds) Serotonin and sleep: molecular, functional and clinical aspects. Birkhauser, Basel, pp 25–68

    Google Scholar 

  • Lowry CA, Hale MW, Evans AK, Heerkens J, Staub DR, Gasser PJ, Shekhar A (2008b) Serotonergic systems, anxiety, and affective disorder: focus on the dorsomedial part of the dorsal raphe nucleus. Ann NY Acad Sci 1148:86–94

    PubMed  Google Scholar 

  • Luiten PG, ter Horst GJ, Steffens AB (1987) The hypothalamus, intrinsic connections and outflow pathways to the endocrine system in relation to the control of feeding and metabolism. Prog In Neurobiol 28:1–54

    CAS  Google Scholar 

  • Maciewicz R, Foote WE, Bry J (1981) Excitatory projection from the interpeduncular nucleus to central superior raphe neurons. Brain Res 225:179–183

    CAS  PubMed  Google Scholar 

  • Maier SF, Watkins LF (1998) Stressor controllability, anxiety, and serotonin. Cogn Ther Res 22:595–613

    Google Scholar 

  • Maier SF, Watkins LR (2005) Stressor controllability and learned helplessness: the roles of the dorsal raphe nucleus, serotonin, and corticotropin-releasing factor. Neurosci Biobehav Rev 29:829–841

    CAS  PubMed  Google Scholar 

  • Malek ZS, Sage D, Pevet P, Raison S (2007) Daily rhythm of tryptophan hydroxylase-2 messenger ribonucleic acid within raphe neurons is induced by corticoid daily surge and modulated by enhanced locomotor activity. Endocrinology 148:5165–5172

    CAS  PubMed  Google Scholar 

  • Mansur SS, Terenzi MG, Neto JM, Faria MS, Paschoalini MA (2010) Phenylephrine into the median raphe nucleus evokes an anxiolytic-like effect in free-feeding rats but does not alter food intake in free feeding rats. Behav Brain Res. doi:10.1016/j.bbr.2010.10.003

  • Martin-Ruiz R, Puig MV, Celada P, Shapiro DA, Roth BL, Mengod G, Artigas F (2001) Control of serotonergic function in medial prefrontal cortex by serotonin-2A receptors through a glutamate-dependent mechanism. J Neurosci 21:9856–9866

    CAS  PubMed  Google Scholar 

  • Mayberg HS, Liotti M, Brannan SK, McGinnis S, Mahurin RK, Jerabek PA, Silva JA, Tekell JL, Martin CC, Lancaster JL, Fox PT (1999) Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. Am J Psychiatry 156:675–682

    CAS  PubMed  Google Scholar 

  • Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, Schwalb JM, Kennedy SH (2005) Deep brain stimulation for treatment-resistant depression. Neuron 45:651–660

    CAS  PubMed  Google Scholar 

  • McBride WJ, Murphy JM, Ikemoto S (1999) Localization of brain reinforcement mechanisms: intracranial self-administration and intracranial place-conditioning studies. Behav Brain Res 101:129–152

    CAS  PubMed  Google Scholar 

  • Mceuen JG, Bale TL (2006) Chronic stress induces alterations in serotonin-related gene expression in a model of CRF dysregulation. 2006 Neuroscience Meeting Planner. Atlanta, GA: Society for Neuroscience, Online , 501.1. 2006. Ref Type: Abstract

  • McKenna JT, Vertes RP (2001) Collateral projections from the median raphe nucleus to the medial septum and hippocampus. Brain Res Bull 54:619–630

    CAS  PubMed  Google Scholar 

  • Meyer-Bernstein EL, Morin LP (1996) Differential serotonergic innervation of the suprachiasmatic nucleus and the intergeniculate leaflet and its role in circadian rhythm modulation. J Neurosci 16:2097–2111

    CAS  PubMed  Google Scholar 

  • Mikkelsen JD, Hay-Schmidt A, Larsen PJ (1997) Central innervation of the rat ependyma and subcommissural organ with special reference to ascending serotoninergic projections from the raphe nuclei. J Comp Neurol 384:556–568

    CAS  PubMed  Google Scholar 

  • Miller JJ, Richardson TL, Fibiger HC, McLennan H (1975) Anatomical and electrophysiological identification of a projection from the mesencephalic raphe to the caudate-putamen in the rat. Brain Res 97:133–138

    CAS  PubMed  Google Scholar 

  • Moga MM, Moore RY (1997) Organization of neural inputs to the suprachiasmatic nucleus in the rat. J Comp Neurol 389:508–534

    CAS  PubMed  Google Scholar 

  • Montone KT, Fass B, Hamill GS (1988) Serotonergic and nonserotonergic projections from the rat interpeduncular nucleus to the septum, hippocampal formation, and raphe: a combined immunocytochemical and fluorescent retrograde labelling study of neurons in the apical subnucleus. Brain Res Bull 20:233–240

    CAS  PubMed  Google Scholar 

  • Morin LP (1999) Serotonin and the regulation of mammalian circadian rhythmicity. Ann Med 31:12–33

    CAS  PubMed  Google Scholar 

  • Morin LP, Blanchard J (1991) Depletion of brain serotonin by 5,7-DHT modifies hamster circadian rhythm response to light. Brain Res 566:173–185

    CAS  PubMed  Google Scholar 

  • Nakamura K, Morrison SF (2010) A thermosensory pathway mediating heat-defense responses. Proc Natl Acad Sci U S A 107:8848–8853

    CAS  PubMed  Google Scholar 

  • Nauta WJ (1958) Hippocampal projections and related neural pathways to the midbrain in the cat. Brain 81:319–340

    CAS  PubMed  Google Scholar 

  • Nemoto C, Hida T, Arai R (1999) Calretinin and calbindin-D-28k in dopaminergic neurons of the rat midbrain: a triple-labeling immunohistochemical study. Brain Res 846:129–136

    CAS  PubMed  Google Scholar 

  • Neumaier JF, Petty F, Kramer GL, Szot P, Hamblin MW (1997) Learned helplessness increases 5-hydroxytryptamine1B receptor mRNA levels in the rat dorsal raphe nucleus. Biol Psychiatry 41:668–674

    CAS  PubMed  Google Scholar 

  • Neumaier JF, Edwards E, Plotsky PM (2002) 5-HT(1B) mRNA regulation in two animal models of altered stress reactivity. Biol Psychiatry 51:902–908

    CAS  PubMed  Google Scholar 

  • Newman DB, Liu RPC (1987) Nuclear origins of brainstem reticulocortical systems in the rat. Am J Anat 178:279–299

    CAS  PubMed  Google Scholar 

  • Nguyen T, Chin WC, O'Brien JA, Verdugo P, Berger AJ (2001) Intracellular pathways regulating ciliary beating of rat brain ependymal cells. J Physiol 531:131–140

    CAS  PubMed  Google Scholar 

  • O'Hearn E, Molliver ME (1984) Organization of raphe-cortical projections in rat: a quantitative retrograde study. Brain Res Bull 13:709–726

    PubMed  Google Scholar 

  • Otake K, Kin K, Nakamura Y (2002) Fos expression in afferents to the rat midline thalamus following immobilization stress. Neurosci Res 43:269–282

    CAS  PubMed  Google Scholar 

  • Ottersen OP (1981) Afferent connections of the amygdaloid complex of the rat with some observations in the cat. III. Afferents from the lower brain stem. J Comp Neurol 202:335–356

    CAS  PubMed  Google Scholar 

  • Pasquier DA, Reinoso-Suarez F (1978) The topographic organization of hypothalamic and brain stem projections to the hippocampus. Brain Res Bull 3:373–389

    CAS  PubMed  Google Scholar 

  • Paxinos G, Franklin KBJ (2001) The mouse brain in stereotaxic coordinates, Second edn. Academic, London

    Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, Fourth edn. Academic, San Diego

    Google Scholar 

  • Paxinos G, Carrive P, Wang H, Wang P-Y (1999) Chemoarchitectonic atlas of the rat brainstem. Academic, San Diego

    Google Scholar 

  • Perroud N, Neidhart E, Petit B, Vessaz M, Laforge T, Relecom C, La HR, Malafosse A, Guipponi M (2010) Simultaneous analysis of serotonin transporter, tryptophan hydroxylase 1 and 2 gene expression in the ventral prefrontal cortex of suicide victims. Am J Med Genet B Neuropsychiatr Genet 153B(4):909–918

    CAS  PubMed  Google Scholar 

  • Petit J-M, Luppi P-H, Peyron C, Rampon C, Jouvet M (1995) VIP-like immunoreactive projections from the dorsal raphe and caudal linear nuclei to the bed nucleus of the stria terminalis demonstrated by a double immunohistochemical method in the rat. Neurosci Lett 193:77–80

    CAS  PubMed  Google Scholar 

  • Petrovicky P (1981) The reticulo-raphe connection. An experimental study using the method of antegrade degeneration and the method of retrograde horseradish peroxidase transport tracing in the rat. J Hirnforsch 22:33–45

    CAS  PubMed  Google Scholar 

  • Peyron C, Petit J-M, Rampon C, Jouvet M, Luppi P-H (1998) Forebrain afferents to the rat dorsal raphe nucleus demonstrated by retrograde and anterograde tracing methods. Neuroscience 82:443–468

    CAS  PubMed  Google Scholar 

  • Porrino LJ, Goldman-Rakic PS (1982) Brainstem innervation of prefrontal and anterior cingulate cortex in the rhesus monkey revealed by retrograde transport of HRP. J Comp Neurol 205:63–76

    CAS  PubMed  Google Scholar 

  • Ramon-Moliner E, Nauta WJH, Verhofstad AAJ (1983) The isodendritic core of the brain stem. J Comp Neurol 126:311–336

    Google Scholar 

  • Rasmussen K, Heym J, Jacobs BL (1984) Activity of serotonin-containing neurons in nucleus centralis superior of freely moving cats. Exp Neurol 83:302–317

    CAS  PubMed  Google Scholar 

  • Rizvi TA, Ennis M, Behbehani MM, Shipley MT (1991) Connections between the central nucleus of the amygdala and the midbrain periaqueductal gray: topography and reciprocity. J Comp Neurol 303:121–131

    CAS  PubMed  Google Scholar 

  • Sakai K, Crochet S (2001) Differentiation of presumed serotonergic dorsal raphe neurons in relation to behavior and wake–sleep states. Neuroscience 104:1141–1155

    CAS  PubMed  Google Scholar 

  • Saper CB, Loewy AD (1980) Efferent connections of the parabrachial nucleus in the rat. Brain Res 197:291–317

    CAS  PubMed  Google Scholar 

  • Saper CB, Swanson LW, Cowan WM (1979) An autoradiographic study of the efferent connections of the lateral hypothalamic area in the rat. J Comp Neurol 183:689–706

    CAS  PubMed  Google Scholar 

  • Sawchenko PE, Swanson LW, Steinbusch HWM, Verhofstad AAJ (1983) The distribution and cells of origin of serotonergic inputs to the paraventricular and supraoptic nuclei of the rat. Brain Res 277:355–360

    CAS  PubMed  Google Scholar 

  • Semba K (1993) Aminergic and cholinergic afferents to REM-sleep induction regions of the pontine reticular formation in the rat. J Comp Neurol 330:543–556

    CAS  PubMed  Google Scholar 

  • Seminowicz DA, Mayberg HS, McIntosh AR, Goldapple K, Kennedy S, Segal Z, Rafi-Tari S (2004) Limbic–frontal circuitry in major depression: a path modeling metanalysis. Neuroimage 22:409–418

    CAS  PubMed  Google Scholar 

  • Shammah-Lagnado SJ, Ricardo JA, Sakamoto NT, Negrao N (1983) Afferent connections of the mesencephalic reticular formation: a horseradish peroxidase study in the rat. Neuroscience 9:391–409

    CAS  PubMed  Google Scholar 

  • Shen H, Semba K (1994) A direct retinal projection to the dorsal raphe nucleus in the rat. Brain Res 635:159–168

    CAS  PubMed  Google Scholar 

  • Shibata H, Suzuki T, Matsushita M (1986) Afferent projections to the interpeduncular nucleus in the rat, as studied by retrograde and anterograde transport of wheat germ agglutinin conjugated to horseradish peroxidase. J Comp Neurol 248:272–284

    CAS  PubMed  Google Scholar 

  • Simerly RB, Swanson LW (1986) The organization of neural inputs to the medial preoptic nucleus of the rat. J Comp Neurol 246:312–342

    CAS  PubMed  Google Scholar 

  • Simerly RB, Swanson LW (1988) Projections of the medial preoptic nucleus: a Phaseolus vulgaris leucoagglutinin anterograde tract-tracing study in the rat. J Comp Neurol 270:209–242

    CAS  PubMed  Google Scholar 

  • Simpson KL, Fisher TM, Waterhouse BD, Lin RC (1998) Projection patterns from the raphe nuclear complex to the ependymal wall of the ventricular system in the rat. J Comp Neurol 399:61–72

    CAS  PubMed  Google Scholar 

  • Singhaniyom W, Wreford NGM, Guldner F-H (1982) Distribution of 5-hydroxytryptamine-containing neuronal perikarya in the rat interpeduncular nucleus. Neurosci Lett 30:51–55

    CAS  PubMed  Google Scholar 

  • Staub DR, Spiga F, Lowry CA (2005) Urocortin 2 increases c-Fos expression in topographically organized subpopulations of serotonergic neurons in the rat dorsal raphe nucleus. Brain Res 1044:176–189

    CAS  PubMed  Google Scholar 

  • Staub DR, Evans AK, Lowry CA (2006) Evidence supporting a role for corticotropin-releasing factor type 2 (CRF(2)) receptors in the regulation of subpopulations of serotonergic neurons. Brain Res 1070:77–89

    CAS  PubMed  Google Scholar 

  • Steinbusch HWM (1981) Distribution of serotonin-immunoreactivity in the central nervous system of the rat. Cell bodies and terminals. Neuroscience 6:557–618

    CAS  PubMed  Google Scholar 

  • Steinbusch HWM (1984) Serotonin-immunoreactive neurons and their projections in the CNS. In: Björklund A, Hökfelt T (eds) Classical transmitters and transmitter receptors in the CNS. Elsevier, Amsterdam, pp 68–125

    Google Scholar 

  • Steinbusch HW, van der Kooy D, Verhofstad AA, Pellegrino A (1980) Serotonergic and non-serotonergic projections from the nucleus raphe dorsalis to the caudate-putamen complex in the rat, studied by a combined immunofluorescence and fluorescent retrograde axonal labeling technique. Neurosci Lett 19:137–142

    CAS  PubMed  Google Scholar 

  • Steinbusch HW, Nieuwenhuys R, Verhofstad AA, van der Kooy D (1981) The nucleus raphe dorsalis of the rat and its projection upon the caudatoputamen. A combined cytoarchitectonic, immunohistochemical and retrograde transport study. J Physiol (Paris) 77:157–174

    CAS  Google Scholar 

  • Stezhka VV, Lovick TA (1997) Projections from dorsal raphe nucleus to the periaqueductal grey matter: studies in slices of rat midbrain maintained in vitro. Neurosci Lett 230:57–60

    CAS  PubMed  Google Scholar 

  • Stratford TR, Wirtshafter D (1988) Evidence for a projection from the B9 serotonergic cell group to the median raphe nucleus. Brain Res Bull 21:325–328

    CAS  PubMed  Google Scholar 

  • Stratford TR, Wirtshafter D (1990) Ascending dopaminergic projections from the dorsal raphe nucleus in the rat. Brain Res 511:173–176

    CAS  PubMed  Google Scholar 

  • Swanson LW, Mogenson GJ, Simerly RB, Wu M (1987) Anatomical and electrophysiological evidence for a projection from the medial preoptic area to the 'mesencephalic and subthalamic locomotor regions' in the rat. Brain Res 405:108–122

    CAS  PubMed  Google Scholar 

  • Takagi H, Shiosaka S, Tohyama M, Senba E, Sakanaka M (1980) Ascending components of the medial forebrain bundle from the lower brain stem in the rat, with special reference to raphe and catecholamine cell groups. A study by the HRP method. Brain Res 193:315–337

    CAS  PubMed  Google Scholar 

  • Tillet Y, Batailler M, Thibault J (1993) Neuronal projections to the medial preoptic area of the sheep, with special reference to monoaminergic afferents—immunohistochemical and retrograde tract tracing studies. J Comp Neurol 330:195–220

    CAS  PubMed  Google Scholar 

  • Tischler RC, Morin LP (2003) Reciprocal serotonergic connections between the hamster median and dorsal raphe nuclei. Brain Res 981:126–132

    CAS  PubMed  Google Scholar 

  • Tork I (1990) Anatomy of the serotonergic system. Ann NY Acad Sci 600:9–35

    CAS  PubMed  Google Scholar 

  • Underwood MD, Arango V, Bakalian MJ, Ruggiero DA, Mann JJ (1999a) Dorsal raphe nucleus serotonergic neurons innervate the rostral ventrolateral medulla in rat. Brain Res 824:45–55

    CAS  PubMed  Google Scholar 

  • Underwood MD, Khaibulina AA, Ellis SP, Moran A, Rice PM, Mann JJ, Arango V (1999b) Morphometry of the dorsal raphe nucleus serotonergic neurons in suicide victims. Biol Psychiatry 46:473–483

    CAS  PubMed  Google Scholar 

  • Valentino RJ, Bey V, Pernar L, Commons KG (2003) Substance P acts through local circuits within the rat dorsal raphe nucleus to alter serotonergic neuronal activity. J Neurosci 23:7155–7159

    CAS  PubMed  Google Scholar 

  • Van Bockstaele EJ, Biswas A, Pickel VM (1993) Topography of serotonin neurons in the dorsal raphe nucleus that send axon collaterals to the rat prefrontal cortex and nucleus accumbens. Brain Res 624:188–198

    PubMed  Google Scholar 

  • Velayos JL, Reinoso-Suarez F (1982) Topographic organization of the brainstem afferents to the mediodorsal thalamic nucleus. J Comp Neurol 206:17–27

    CAS  PubMed  Google Scholar 

  • Verleysdonk S, Kistner S, Pfeiffer-Guglielmi B, Wellard J, Lupescu A, Laske J, Lang F, Rapp M, Hamprecht B (2005) Glycogen metabolism in rat ependymal primary cultures: regulation by serotonin. Brain Res 1060:89–99

    CAS  PubMed  Google Scholar 

  • Vertes RP (1990) Fundamentals of brainstem anatomy: a behavioral perspective. In: Klemm WR, Vertes RP (eds) Brainstem mechanisms of behavior. Wiley, New York, pp 33–103

    Google Scholar 

  • Vertes RP (2006) Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat. Neuroscience 142:1–20

    CAS  PubMed  Google Scholar 

  • Vertes RP, Crane AM (1997) Distribution, quantification, and morphological characteristics of serotonin-immunoreactive cells of the supralemniscal nucleus (B9) and pontomesencephalic reticular formation in the rat. J Comp Neurol 378:411–424

    CAS  PubMed  Google Scholar 

  • Vertes RP, Fass B (1988) Projections between the interpeduncular nucleus and basal forebrain in the rat as demonstrated by the anterograde and retrograde transport of WGA-HRP. Exp Brain Res 73:23–31

    CAS  PubMed  Google Scholar 

  • Vertes RP, Kocsis B (1994) Projections of the dorsal raphe nucleus to the brainstem: PHA-L analysis in the rat. J Comp Neurol 340:11–26

    CAS  PubMed  Google Scholar 

  • Vertes RP, Linley SB (2008) Efferent and afferent connections of the dorsal and median raphe nuclei in the rat. In: Monti JM, Pandi-Perumal SR, Jacobs BL, Nutt DJ (eds) Serotonin and sleep: molecular, functional and clinical aspects. Birkhäuser, Basal, pp 69–102

    Google Scholar 

  • Vertes RP, Kinney GG, Kocsis B, Fortin WJ (1994) Pharmacological suppression of the median raphe nucleus with serotonin1A agonists, 8-OH-DPAT and buspirone, produces hippocampal theta rhythm in the rat. Neuroscience 60:441–451

    CAS  PubMed  Google Scholar 

  • Vertes RP, Fortin WJ, Crane AM (1999) Projections of the median raphe nucleus in the rat. J Comp Neurol 407:555–582

    CAS  PubMed  Google Scholar 

  • Villar MJ, Vitale ML, Parisi MN (1987) Dorsal raphe serotonergic projection to the retina. A combined peroxidase tracing-neurochemical/high performance liquid chromatography study in the rat. Neuroscience 22:681–686

    CAS  PubMed  Google Scholar 

  • Villar MJ, Vitale ML, Hokfelt T, Verhofstad AAJ (1988) Dorsal raphe serotonergic branching neurons projecting to both the lateral geniculate body and superior colliculus: a combined retrograde tracing-immunohistochemical study in the rat. J Comp Neurol 277:126–140

    CAS  PubMed  Google Scholar 

  • Walker JJ, Bishop GA, Ho RH, King JS (1988) Brainstem origin of serotonin- and enkephalin-immunoreactive afferents to the opossum's cerebellum. J Comp Neurol 276:481–497

    CAS  PubMed  Google Scholar 

  • Waterhouse BD, Mihailoff GA, Baack JC, Woodward DJ (1986) Topographical distribution of dorsal and median raphe neurons projecting to motor, sensorimotor, and visual cortical areas in the rat. J Comp Neurol 249:460–481

    CAS  PubMed  Google Scholar 

  • Waterhouse BD, Border B, Wahl L, Mihailoff GA (1993) Topographic organization of rat locus coeruleus and dorsal raphe nuclei: distribution of cells projecting to visual system structures. J Comp Neurol 336:345–361

    CAS  PubMed  Google Scholar 

  • Webb IC, Patton DF, Landry GJ, Mistlberger RE (2010) Circadian clock resetting by behavioral arousal: neural correlates in the midbrain raphe nuclei and locus coeruleus. Neuroscience 166:739–751

    CAS  PubMed  Google Scholar 

  • Westenberg HG, Fineberg NA, Denys D (2007) Neurobiology of obsessive-compulsive disorder: serotonin and beyond. CNS Spectr 12:14–27

    PubMed  Google Scholar 

  • Wiklund L, Leger L, Persson M (1981) Monoamine cell distribution in the cat brain stem. A fluorescence histochemical study with quantification of indoleaminergic and locus coeruleus cell groups. J Comp Neurol 203:613–647

    CAS  PubMed  Google Scholar 

  • Willoughby JO, Blessing WW (1987) Origin of serotonin innervation of the arcuate and ventromedial hypothalamic region. Brain Res 428:170–173

    Google Scholar 

  • Wirtshafter D (2001) The control of ingestive behavior by the median raphe nucleus. Appetite 36:99–105

    CAS  PubMed  Google Scholar 

  • Wirtshafter D, Krebs JC (1990) Control of food intake by kainate/quisqualate receptors in the median raphe nucleus. Psychopharmacology (Berl) 101:137–141

    CAS  Google Scholar 

  • Wirtshafter D, Asin KE, Lorens SA (1986) Serotonin-immunoreactive projections to the hippocampus from the interpeduncular nucleus in the rat. Neurosci Lett 64:259–262

    CAS  PubMed  Google Scholar 

  • Woolf NJ, Butcher LL (1985) Cholinergic systems in the rat brain II. Projections to the interpeduncular nucleus. Brain Res Bull 14:63–83

    CAS  PubMed  Google Scholar 

  • Wylie CJ, Hendricks TJ, Zhang B, Wang L, Lu P, Leahy P, Fox S, Maeno H, Deneris ES (2010) Distinct transcriptomes define rostral and caudal serotonin neurons. J Neurosci 30:670–684

    CAS  PubMed  Google Scholar 

  • Wyss JM, Swanson LW, Cowan WM (1979) A study of subcortical afferents to the hippocampal formation in the rat. Neuroscience 4:463–476

    CAS  PubMed  Google Scholar 

  • Yamakawa GR, Antle MC (2010) Phenotype and function of raphe projections to the suprachiasmatic nucleus. Eur J Neurosci 31:1974–1983

    PubMed  Google Scholar 

  • Zhou FC, Azmitia EC (1983) Effects of 5,7-dihydroxytryptamine on HRP retrograde transport from hippocampus to midbrain raphe nuclei in the rat. Brain Res Bull 10:445–451

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Kathleen F. Dady for conducting the immunohistochemical staining for tryptophan hydroxylase in Fig. 1. This work was supported by Award Number R01MH086539 from the National Institute of Mental Health. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Mental Health or the National Institutes of Health.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher A. Lowry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hale, M.W., Lowry, C.A. Functional topography of midbrain and pontine serotonergic systems: implications for synaptic regulation of serotonergic circuits. Psychopharmacology 213, 243–264 (2011). https://doi.org/10.1007/s00213-010-2089-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-010-2089-z

Keywords

Navigation