Skip to main content
Log in

New operant model of reinstatement of food-seeking behavior in mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

A major problem in treating obesity is the high rate of relapse to abnormal food-taking behavior when maintaining diet.

Objectives

The present study evaluates the reinstatement of extinguished palatable food-seeking behavior induced by cues previously associated with the palatable food, re-exposure to this food, or stress. The participation of the opioid and dopamine mechanisms in the acquisition, extinction, and cue-induced reinstatement was also investigated.

Materials and methods

C57BL/6 mice were first trained on a fixed-ratio-1 schedule of reinforcement to obtain chocolate-flavored pellets during 20 days, which was associated to a stimulus light. Operant behavior was then extinguished during 20 daily sessions. mRNA levels of opioid peptide precursors and dopamine receptors were evaluated in the brain by in situ hybridization and RT-PCR techniques.

Results

A reinstatement of food-seeking behavior was only obtained after exposure to the food-associated cue. A down-regulation of prodynorphin mRNA was found in the dorsal striatum and nucleus accumbens after the acquisition, extinction, and reinstatement of the operant behavior. Extinction and reinstatement of this operant response enhanced proenkephalin mRNA in the dorsal striatum and/or the nucleus accumbens core. Down-regulation of D2 receptor expression was observed in the dorsal striatum and nucleus accumbens after reinstatement. An up-regulation of PDYN mRNA expression was found in the hypothalamus after extinction and reinstatement.

Conclusions

This study provides a new operant model in mice for the evaluation of food-taking behavior and reveals specific changes in the dopamine and opioid system associated to the behavioral responses directed to obtain a natural reward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Arc:

Activity-regulated cytoskeleton-associated protein

BDNF:

Brain-derived neurotrophic factor

Cartpt:

Prepropeptide cart

Crh:

Corticotropin-releasing hormone

Ghrl:

Ghrelin

Hcrt:

Hypocretin

PENK:

Proenkephalin

PDYN:

Prodynorphin and POMC, proopiomelanocortin

References

  • Abercrombie ED, Keller RW Jr, Zigmond MJ (1988) Characterization of hippocampal norepinephrine release as measured by microdialysis perfusion: pharmacological and behavioral studies. Neuroscience 27:897–904

    Article  PubMed  CAS  Google Scholar 

  • Aghajanian GK, VanderMaelen CP (1982) Alpha 2-adrenoceptor-mediated hyperpolarization of locus coeruleus neurons: intracellular studies in vivo. Science 215:1394–1396

    Article  PubMed  CAS  Google Scholar 

  • Ahmed SH, Koob GF (1997) Cocaine- but not food-seeking behavior is reinstated by stress after extinction. Psychopharmacol Berl 132:289–295

    Article  CAS  Google Scholar 

  • Angulo JA (1992) Involvement of dopamine D1 and D2 receptors in the regulation of proenkephalin mRNA abundance in the striatum and accumbens of the rat brain. J Neurochem 58:1104–1109

    Article  PubMed  CAS  Google Scholar 

  • Barbano MF, Castañé A, Martín-García E, Maldonado R (2009) Delta-9-tetrahydrocannabinol enhances food reinforcement in a mouse operant conflict test. Psychopharmacology 205:475–487

    Article  PubMed  CAS  Google Scholar 

  • Bello NT, Lucas LR, Hajnal A (2002) Repeated sucrose access influences dopamine D2 receptor density in the striatum. NeuroReport 13:1575–1578

    Article  PubMed  CAS  Google Scholar 

  • Berrendero F, Kieffer BL, Maldonado R (2002) Attenuation of nicotine-induced antinociception, rewarding effects, and dependence in mu-opioid receptor knock-out mice. J Neurosci 22:10935–10940

    PubMed  CAS  Google Scholar 

  • Berrendero F, Mendizabal V, Robledo P, Galeote L, Bilkei-Gorzo A, Zimmer A, Maldonado R (2005) Nicotine-induced antinociception, rewarding effects, and physical dependence are decreased in mice lacking the preproenkephalin gene. J Neurosci 25:1103–1112

    Article  PubMed  CAS  Google Scholar 

  • Blanchard DC, Griebel G, Blanchard RJ (2001) Mouse defensive behaviors: pharmacological and behavioral assays for anxiety and panic. Neurosci Biobehav Rev 25:205–218

    Article  PubMed  CAS  Google Scholar 

  • Bossert JM, Busch RF, Gray SM (2005) The novel mGluR2/3 agonist LY379268 attenuates cue-induced reinstatement of heroin seeking. NeuroReport 16:1013–1016

    Article  PubMed  CAS  Google Scholar 

  • Bossert JM, Poles GC, Wihbey KA, Koya E, Shaham Y (2007) Differential effects of blockade of dopamine D1-family receptors in nucleus accumbens core or shell on reinstatement of heroin seeking induced by contextual and discrete cues. J Neurosci 27:12655–12663

    Article  PubMed  CAS  Google Scholar 

  • Bremner JD, Krystal JH, Southwick SM, Charney DS (1996) Noradrenergic mechanisms in stress and anxiety: II. Clinical studies. Synapse 23:39–51

    Article  PubMed  CAS  Google Scholar 

  • Caggiula AR, Donny EC, White AR, Chaudhri N, Booth S, Gharib MA, Hoffman A, Perkins KA, Sved AF (2001) Cue dependency of nicotine self-administration and smoking. Pharmacol Biochem Behav 70:515–530

    Article  PubMed  CAS  Google Scholar 

  • Chou TC, Lee CE, Lu J, Elmquist JK, Hara J, Willie JT, Beuckmann CT, Chemelli RM, Sakurai T, Yanagisawa M, Saper CB, Scammell TE (2001) Orexin (hypocretin) neurons contain dynorphin. J Neurosci 21:RC168

    PubMed  CAS  Google Scholar 

  • Civelli O, Douglass J, Goldstein A, Herbert E (1985) Sequence and expression of the rat prodynorphin gene. Proc Natl Acad Sci USA 82:4291–4295

    Article  PubMed  CAS  Google Scholar 

  • Corwin RL, Grigson PS (2009) Symposium overview—food addiction: fact or fiction? J Nutr 139:617–619

    Article  PubMed  CAS  Google Scholar 

  • Dayas CV, McGranahan TM, Martin-Fardon R, Weiss F (2008) Stimuli linked to ethanol availability activate hypothalamic CART and orexin neurons in a reinstatement model of relapse. Biol Psychiatry 63:152–157

    Article  PubMed  CAS  Google Scholar 

  • de Araujo I, Oliveira-Maia AJ, Sotnikova TD, Gainetdinov RR, Caron MG, Nicolelis MA, Simon SA (2008) Food reward in the absence of taste receptor signaling. Neuron 57:930–941

    Article  PubMed  Google Scholar 

  • Drago J, Gerfen CR, Lachowicz JE, Steiner H, Hollon TR, Love PE, Ooi GT, Grinberg A, Lee EJ, Huang SP (1994) Altered striatal function in a mutant mouse lacking D1A dopamine receptors. Proc Natl Acad Sci USA 20(91):12564–12568

    Article  Google Scholar 

  • Fuchs RA, See RE, Middaugh LD (2003) Conditioned stimulus-induced reinstatement of extinguished cocaine seeking in C57BL/6 mice: a mouse model of drug relapse. Brain Res 973:99–106

    Article  PubMed  CAS  Google Scholar 

  • Fuchs RA, Evans KA, Parker MP, See RE (2004) Differential involvement of orbitofrontal cortex subregions in conditioned cue-induced and cocaine-primed reinstatement of cocaine seeking in rats. J Neurosci 24:6600–6610

    Article  PubMed  CAS  Google Scholar 

  • Funk D, Li Z, Le AD (2006) Effects of environmental and pharmacological stressors on c-fos and corticotropin-releasing factor mRNA in rat brain: relationship to the reinstatement of alcohol seeking. Neuroscience 138:235–243

    Article  PubMed  CAS  Google Scholar 

  • Georges F, Stinus L, Bloch B, Le MC (1999) Chronic morphine exposure and spontaneous withdrawal are associated with modifications of dopamine receptor and neuropeptide gene expression in the rat striatum. Eur J Neurosci 11:481–490

    Article  PubMed  CAS  Google Scholar 

  • Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsma FJ Jr, Sibley DR (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250:1429–1432

    Article  PubMed  CAS  Google Scholar 

  • Ghitza UE, Gray SM, Epstein DH, Rice KC, Shaham Y (2006) The anxiogenic drug yohimbine reinstates palatable food seeking in a rat relapse model: a role of CRF1 receptors. Neuropsychopharmacology 31:2188–2196

    PubMed  CAS  Google Scholar 

  • Ghitza UE, Nair SG, Golden SA, Gray SM, Uejima JL, Bossert JM, Shaham Y (2007) Peptide YY3-36 decreases reinstatement of high-fat food seeking during dieting in a rat relapse model. J Neurosci 27:11522–11532

    Article  PubMed  CAS  Google Scholar 

  • Harris GC, Wimmer M, ston-Jones G (2005) A role for lateral hypothalamic orexin neurons in reward seeking. Nature 437:556–559

    Article  PubMed  CAS  Google Scholar 

  • Johansson A, Fredriksson R, Winnergren S, Hulting AL, Schioth HB, Lindblom J (2008) The relative impact of chronic food restriction and acute food deprivation on plasma hormone levels and hypothalamic neuropeptide expression. Peptides 29:1588–1595

    Article  PubMed  CAS  Google Scholar 

  • Kelley AE (2004) Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning. Neurosci Biobehav Rev 27:765–776

    Article  PubMed  Google Scholar 

  • Kelley AE, Berridge KC (2002) The neuroscience of natural rewards: relevance to addictive drugs. J Neurosci 22:3306–3311

    PubMed  CAS  Google Scholar 

  • Kelley AE, Will MJ, Steininger TL, Zhang M, Haber SN (2003) Restricted daily consumption of a highly palatable food (chocolate Ensure(R)) alters striatal enkephalin gene expression. Eur J Neurosci 18:2592–2598

    Article  PubMed  CAS  Google Scholar 

  • Korostynski M, Piechota M, Kaminska D, Solecki W, Przewlocki R (2007) Morphine effects on striatal transcriptome in mice. Genome Biol 8:R128

    Article  PubMed  Google Scholar 

  • Le Foll B, Gallo A, Le SY, Lu L, Gorwood P (2009) Genetics of dopamine receptors and drug addiction: a comprehensive review. Behav Pharmacol 20:1–17

    Article  PubMed  Google Scholar 

  • Le Moine C, Normand E, Guitteny AF, Fouque B, Teoule R, Bloch B (1990) Dopamine receptor gene expression by enkephalin neurons in rat forebrain. Proc Natl Acad Sci USA 87:230–234

    Article  PubMed  Google Scholar 

  • Lê AD, Quan B, Juzytch W, Fletcher PJ, Joharchi N, Shaham Y (1998) Reinstatement of alcohol-seeking by priming injections of alcohol and exposure to stress in rats. Psychopharmacol Berl 135:169–174

    Article  Google Scholar 

  • Lutter M, Nestler EJ (2009) Homeostatic and hedonic signals interact in the regulation of food intake. J Nutr 139:629–632

    Article  PubMed  CAS  Google Scholar 

  • Maldonado R, Dauge V, Feger J, Roques BP (1990) Chronic blockade of D2 but not D1 dopamine receptors facilitates behavioural responses to endogenous enkephalins, protected by kelatorphan, administered in the accumbens in rats. Neuropharmacology 29:215–223

    Article  PubMed  CAS  Google Scholar 

  • Margolis EB, Hjelmstad GO, Bonci A, Fields HL (2003) Kappa-opioid agonists directly inhibit midbrain dopaminergic neurons. J Neurosci 23:9981–9986

    PubMed  CAS  Google Scholar 

  • Martin-Garcia E, Barbano MF, Galeote L, Maldonado R (2009) New operant model of nicotine-seeking behaviour in mice. Int J Neuropsychopharmacol 12:343–356

    Article  PubMed  CAS  Google Scholar 

  • Mendizabal V, Zimmer A, Maldonado R (2006) Involvement of kappa/dynorphin system in WIN 55,212-2 self-administration in mice. Neuropsychopharmacology 31:1957–1966

    Article  PubMed  CAS  Google Scholar 

  • Mengod G, Martinez-Mir MI, Vilaro MT, Palacios JM (1989) Localization of the mRNA for the dopamine D2 receptor in the rat brain by in situ hybridization histochemistry. Proc Natl Acad Sci USA 86:8560–8564

    Article  PubMed  CAS  Google Scholar 

  • Mitchell JB, Gratton A (1992) Partial dopamine depletion of the prefrontal cortex leads to enhanced mesolimbic dopamine release elicited by repeated exposure to naturally reinforcing stimuli. J Neurosci 12:3609–3618

    PubMed  CAS  Google Scholar 

  • Nair SG, Gray SM, Ghitza UE (2006) Role of food type in yohimbine- and pellet-priming-induced reinstatement of food seeking. Physiol Behav 88:559–566

    Article  PubMed  CAS  Google Scholar 

  • Nair SG, ms-Deutsch T, Epstein DH, Shaham Y (2009) The neuropharmacology of relapse to food seeking: methodology, main findings, and comparison with relapse to drug seeking. Prog Neurobiol 89:18–45

    Article  PubMed  CAS  Google Scholar 

  • Olszewski PK, Levine AS (2007) Central opioids and consumption of sweet tastants: when reward outweighs homeostasis. Physiol Behav 91:506–512

    Article  PubMed  CAS  Google Scholar 

  • Pelchat ML (2009) Food addiction in humans. J Nutr 139:620–622

    Article  PubMed  CAS  Google Scholar 

  • Peterson CB, Mitchell JE (1999) Psychosocial and pharmacological treatment of eating disorders: a review of research findings. J Clin Psychol 55:685–697

    Article  PubMed  CAS  Google Scholar 

  • Piazza PV, Le Moal M (1998) The role of stress in drug self-administration. Trends Pharmacol Sci 19:67–74

    Article  PubMed  CAS  Google Scholar 

  • Piechota M, Korostynski M, Solecki W, Gieryk A, Slezak M, Bilecki W, Ziolkowska B, Kostrzewa E, Cymerman I, Swiech L, Jaworski J, Przewlocki R (2010) The dissection of transcriptional modules regulated by various drugs of abuse in the mouse striatum. Genome Biol 11:R48

    Article  PubMed  Google Scholar 

  • Plaza-Zabala A, Martin-Garcia E, de LL, Maldonado R, Berrendero F (2010) Hypocretins regulate the anxiogenic-like effects of nicotine and induce reinstatement of nicotine-seeking behavior. J Neurosci 30:2300–2310

    Article  PubMed  Google Scholar 

  • Przewlocki R (2004) Opioid abuse and brain gene expression. Eur J Pharmacol 500:331–349

    Article  PubMed  CAS  Google Scholar 

  • Przewlocka B, Lason W (1995) Adaptive changes in the proenkephalin and D2 dopamine receptor mRNA expression after chronic cocaine in the nucleus accumbens and striatum of the rat. Eur Neuropsychopharmacol 5:465–469

    PubMed  CAS  Google Scholar 

  • Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev 18:247–291

    Article  PubMed  CAS  Google Scholar 

  • Roth-Deri I, Green-Sadan T, Yadid G (2008) Beta-endorphin and drug-induced reward and reinforcement. Prog Neurobiol 86:1–21

    Article  PubMed  CAS  Google Scholar 

  • Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richardson JA, Kozlowski GP, Wilson S, Arch JR, Buckingham RE, Haynes AC, Carr SA, Annan RS, McNulty DE, Liu WS, Terrett JA, Elshourbagy NA, Bergsma DJ, Yanagisawa M (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92:573–585

    Google Scholar 

  • Shimada T, Matsumoto K, Osanai M, Matsuda H, Terasawa K, Watanabe H (1995) The modified light/dark transition test in mice: evaluation of classic and putative anxiolytic and anxiogenic drugs. Gen Pharmacol 26:205–210

    PubMed  CAS  Google Scholar 

  • Shippenberg TS, Zapata A, Chefer VI (2007) Dynorphin and the pathophysiology of drug addiction. Pharmacol Ther 116:306–321

    Article  PubMed  CAS  Google Scholar 

  • Short JL, Ledent C, Borrelli E, Drago J, Lawrence AJ (2006) Genetic interdependence of adenosine and dopamine receptors: evidence from receptor knockout mice. Neuroscience 139:661–670

    Article  PubMed  CAS  Google Scholar 

  • Sivam SP, Strunk C, Smith DR, Hong JS (1986) Proenkephalin-A gene regulation in the rat striatum: influence of lithium and haloperidol. Mol Pharmacol 30:186–191

    PubMed  CAS  Google Scholar 

  • Soria G, Mendizabal V, Tourino C, Robledo P, Ledent C, Parmentier M, Maldonado R, Valverde O (2005) Lack of CB1 cannabinoid receptor impairs cocaine self-administration. Neuropsychopharmacology 30:1670–1680

    Article  PubMed  CAS  Google Scholar 

  • Soria G, Barbano MF, Maldonado R, Valverde O (2008) A reliable method to study cue-, priming-, and stress-induced reinstatement of cocaine self-administration in mice. Psychopharmacol Berl 199:593–603

    Article  CAS  Google Scholar 

  • Spangler R, Wittkowski KM, Goddard NL, Avena NM, Hoebel BG, Leibowitz SF (2004) Opiate-like effects of sugar on gene expression in reward areas of the rat brain. Brain Res Mol Brain Res 19:134–142

    Article  Google Scholar 

  • Tang F, Costa E, Schwartz JP (1983) Increase of proenkephalin mRNA and enkephalin content of rat striatum after daily injection of haloperidol for 2 to 3 weeks. Proc Natl Acad Sci USA 80:3841–3844

    Article  PubMed  CAS  Google Scholar 

  • Trigo JM, Zimmer A, Maldonado R (2009) Nicotine anxiogenic and rewarding effects are decreased in mice lacking beta-endorphin. Neuropharmacology 56:1147–1153

    Article  PubMed  CAS  Google Scholar 

  • Turchan J, Przewlocka B, Lason W, Przewlocki R (1998) Effects of repeated psychostimulant administration on the prodynorphin system activity and kappa opioid receptor density in the rat brain. Neuroscience 85:1051–1059

    Google Scholar 

  • Volkow ND, O’Brien CP (2007) Issues for DSM-V: should obesity be included as a brain disorder? Am J Psychiatry 164:708–710

    Article  PubMed  Google Scholar 

  • Volkow ND, Wang GJ, Fowler JS, Telang F (2008a) Overlapping neuronal circuits in addiction and obesity: evidence of systems pathology. Philos Trans R Soc Lond B Biol Sci 363:3191–3200

    Article  PubMed  Google Scholar 

  • Volkow ND, Wang GJ, Telang F, Fowler JS, Thanos PK, Logan J, Alexoff D, Ding YS, Wong C, Ma Y, Pradhan K (2008b) Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: possible contributing factors. Neuroimage 42:1537–1543

    Article  PubMed  Google Scholar 

  • Wang B, Shaham Y, Zitzman D, Azari S, Wise RA, You ZB (2005) Cocaine experience establishes control of midbrain glutamate and dopamine by corticotropin-releasing factor: a role in stress-induced relapse to drug seeking. J Neurosci 25:5389–5396

    Article  PubMed  CAS  Google Scholar 

  • Ward SJ, Dykstra LA (2005) The role of CB1 receptors in sweet versus fat reinforcement: effect of CB1 receptor deletion, CB1 receptor antagonism (SR141716A) and CB1 receptor agonism (CP-55940). Behav Pharmacol 16:381–388

    Article  PubMed  CAS  Google Scholar 

  • Yan Y, Nabeshima T (2009) Mouse model of relapse to the abuse of drugs: procedural considerations and characterizations. Behav Brain Res 196:1–10

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa K, Williams C, Sabol SL (1984) Rat brain preproenkephalin mRNA. cDNA cloning, primary structure, and distribution in the central nervous system. J Biol Chem 259:14301–14308

    PubMed  CAS  Google Scholar 

  • Young WS III, Bonner TI, Brann MR (1986) Mesencephalic dopamine neurons regulate the expression of neuropeptide mRNAs in the rat forebrain. Proc Natl Acad Sci USA 83:9827–9831

    Article  PubMed  CAS  Google Scholar 

  • Zurawski G, Benedik M, Kamb BJ, Abrams JS, Zurawski SM, Lee FD (1986) Activation of mouse T-helper cells induces abundant preproenkephalin mRNA synthesis. Science 232:772–775

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the USA National Institutes of Health—National Institute of Drug Abuse (NIH-NIDA) (No. 1R01-DA01 6768-0111), the DG Research of the European Commission (PHECOMP, No. LHSM-CT-2007-037669 and GENADDICT, No. LSHM-CT-2004-05166), the Spanish ‘Instituto de Salud Carlos III’ (No. RD06/001/001), the Spanish ‘Ministerio de Educación y Ciencia’ (No. SAF2007-64062), the Catalan Government (SGR2009-00131), the ICREA Foundation (ICREA Academia-2008), the statutory activity funds of the Institute of Pharmacology, Polish Academy of Sciences and the Polish Ministry of Science and Higher Education subsidiary grant 478/6. PR UE/2007/7. E.M.G. was supported by a post-doctoral fellowship from the Spanish ‘Instituto de Salud Carlos III’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Maldonado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martín-García, E., Burokas, A., Kostrzewa, E. et al. New operant model of reinstatement of food-seeking behavior in mice. Psychopharmacology 215, 49–70 (2011). https://doi.org/10.1007/s00213-010-2110-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-010-2110-6

Keywords

Navigation