Skip to main content

Advertisement

Log in

Disruption of model-based behavior and learning by cocaine self-administration in rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Addiction is characterized by maladaptive decision-making, in which individuals seem unable to use adverse outcomes to modify their behavior. Adverse outcomes are often infrequent, delayed, and even rare events, especially when compared to the reliable rewarding drug-associated outcomes. As a result, recognizing and using information about their occurrence put a premium on the operation of so-called model-based systems of behavioral control, which allow one to mentally simulate outcomes of different courses of action based on knowledge of the underlying associative structure of the environment. This suggests that addiction may reflect, in part, drug-induced dysfunction in these systems. Here, we tested this hypothesis.

Objectives

This study aimed to test whether cocaine causes deficits in model-based behavior and learning independent of requirements for response inhibition or perception of costs or punishment.

Methods

We trained rats to self-administer sucrose or cocaine for 2 weeks. Four weeks later, the rats began training on a sensory preconditioning and inferred value blocking task. Like devaluation, normal performance on this task requires representations of the underlying task structure; however, unlike devaluation, it does not require either response inhibition or adapting behavior to reflect aversive outcomes.

Results

Rats trained to self-administer cocaine failed to show conditioned responding or blocking to the preconditioned cue. These deficits were not observed in sucrose-trained rats nor did they reflect any changes in responding to cues paired directly with reward.

Conclusions

These results imply that cocaine disrupts the operation of neural circuits that mediate model-based behavioral control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • APA (2000) Diagnostic and statistical manual of mental disorders, 4th edn (text revision). American Psychiatric Association, Washington DC

    Google Scholar 

  • Belin D, Everitt BJ (2008) Cocaine seeking habits depend upon dopamine-dependent serial connectivity linking the ventral with the dorsal striatum. Neuron 57:432–441

    Article  PubMed  CAS  Google Scholar 

  • Castner SA, Smagin GN, Piser TM, Wang Y, Smith JS, Christian EP, Mrzljak L, Williams GV (2011) Immediate and sustained improvements in working memory after selective stimulation of alpha7 nicotinic acetylcholine receptors. Biol Psychiatry 69:12–18

    Article  PubMed  CAS  Google Scholar 

  • Clarke HF, Dalley JW, Crofts HS, Robbins TW, Roberts AC (2004) Cognitive inflexibility after prefrontal serotonin depletion. Science 304:878–880

    Article  PubMed  CAS  Google Scholar 

  • Corbit LH, Balleine BW (2003) The role of prelimbic cortex in instrumental conditioning. Behav Brain Res 146:145–157

    Article  PubMed  Google Scholar 

  • Daw ND, Niv Y, Dayan P (2005) Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat Neurosci 8:1704–1711

    Article  PubMed  CAS  Google Scholar 

  • Deroche-Gamonet V, Belin D, Piazza PV (2004) Evidence for addiction-like behavior in the rat. Science 305:951–953

    Article  Google Scholar 

  • Dutra L, Stathopoulou G, Basden SL, Leyro TM, Powers MB, Otto MW (2008) A meta-analytic review of psychosocial interventions for substance use disorders. Am J Psychiatry 165:179–187

    Article  PubMed  Google Scholar 

  • Gawin FH (1991) Cocaine addiction: psychology and neurophysiology. Science 251:1580–1586

    Article  PubMed  CAS  Google Scholar 

  • Goldstein RZ, Volkow ND (2011) Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat Rev Neurosci 12:652–669

    Article  PubMed  CAS  Google Scholar 

  • Goldstein RZ, Alia-Klein N, Tomasi D, Zhang L, Cottone LA, Maloney T, Telang F, Caparelli EC, Chang L, Ernst T, Samaras D, Squires NK, Volkow ND (2007a) Is decreased prefrontal cortical sensitivity to monetary reward associated with impaired motivation and self-control in cocaine addiction? Am J Psychiatry 164:43–51

    Article  PubMed  Google Scholar 

  • Goldstein RZ, Tomasi D, Alia-Klein N, Cottone LA, Zhang L, Telang F, Volkow ND (2007b) Subjective sensitivity to monetary gradients is associated with frontolimbic activation to reward in cocaine abusers. Drug Alcohol Depend 87:233–240

    Article  PubMed  Google Scholar 

  • Goldstein RZ, Woicik PA, Maloney T, Tomasi D, Alia-Klein N, Shan J, Honorio J, Samaras D, Wang R, Telang F, Wang GJ, Volkow ND (2010) Oral methylphenidate normalizes cingulate activity in cocaine addiction during a salient cognitive task. Proc Natl Acad Sci U S A 107:16667–16672

    Article  PubMed  CAS  Google Scholar 

  • Homayoun H, Moghaddam B (2006) Progression of cellular adaptations in medial prefrontal and orbitofrontal cortex in response to repeated amphetamine. J Neurosci 26:8025–8039

    Article  PubMed  CAS  Google Scholar 

  • Izquierdo AD, Suda RK, Murray EA (2004) Bilateral orbital prefrontal cortex lesions in rhesus monkeys disrupt choices guided by both reward value and reward contingency. J Neurosci 24:7540–7548

    Article  PubMed  CAS  Google Scholar 

  • Jentsch JD, Taylor JR (1999) Impulsivity resulting from frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward-related stimuli. Psychopharmacology 146:373–390

    Article  PubMed  CAS  Google Scholar 

  • Jones JL, Esber GR, McDannald MA, Gruber AJ, Hernandez G, Mirenzi A, Schoenbaum G (2012) Orbitofrontal cortex supports behavior and learning using inferred but not cached values. Science 338:953–956

    Article  PubMed  CAS  Google Scholar 

  • Killcross S, Coutureau E (2003) Coordination of actions and habits in the medial prefrontal cortex of rats. Cerebral Cortex 13:400–408

    Article  PubMed  Google Scholar 

  • Konova AB, Moeller SJ, Tomasi D, Parvaz MA, Alia-Klein N, Volkow ND, Goldstein RZ (2012) Structural and behavioral correlates of abnormal encoding of money value in the sensorimotor striatum in cocaine addiction. Eur J Neurosci 36:2979–2988

    Article  PubMed  Google Scholar 

  • Koob GF, Le Moal M (2008) Review. Neurobiological mechanisms for opponent motivational processes in addiction. Phil Trans R Soc Lond B 363:3113–3123

    Article  Google Scholar 

  • Lucantonio F, Stalnaker TA, Shaham Y, Niv Y, Schoenbaum G (2012) The impact of orbitofrontal dysfunction on cocaine addiction. Nat Neurosci 15:358–366

    Article  PubMed  CAS  Google Scholar 

  • Machado CJ, Bachevalier J (2007) The effects of selective amygdala, orbital frontal cortex or hippocampal formation lesions on reward assessment in nonhuman primates. Eur J Neurosci 25:2885–2904

    Article  PubMed  Google Scholar 

  • Mendelson JH, Mello NK (1996) Management of cocaine abuse and dependence. N Engl J Med 334:965–972

    Article  PubMed  CAS  Google Scholar 

  • Mendez IA, Simon NW, Hart N, Mitchell MR, Nation JR, Wellman PJ, Setlow B (2010) Self-administered cocaine causes long-lasting increases in impulsive choice in a delay discounting task. Behav Neurosci 124:470–477

    Article  PubMed  CAS  Google Scholar 

  • Milad MR, Quirk GJ (2002) Neurons in medial prefrontal cortex signal memory for fear extinction. Nature 420:70–74

    Article  PubMed  CAS  Google Scholar 

  • Moeller SJ, Hajcak G, Parvaz MA, Dunning JP, Volkow ND, Goldstein RZ (2012) Psychophysiological prediction of choice: relevance to insight and drug addiction. Brain 135:3481–3494

    Article  PubMed  Google Scholar 

  • Moeller SJ, Honorio J, Tomasi D, Parvaz MA, Woicik PA, Volkow ND, Goldstein RZ (2013) Methylphenidate enhances executive function and optimizes prefrontal function in both health and cocaine addiction. Cereb Cortex. doi:10.1093/cercor/bhs345

  • Nelson A, Killcross S (2006) Amphetamine exposure enhances habit formation. J Neurosci 26:3805–3812

    Article  PubMed  CAS  Google Scholar 

  • Niv Y, Joel D, Dayan P (2006) A normative perspective on motivation. Trends Cogn Sci 10:375–381

    Article  PubMed  Google Scholar 

  • Nonkes LJ, Tomson K, Maertin A, Dederen J, Maes JH, Homberg J (2010) Orbitofrontal cortex and amygdalar over-activity is associated with an inability to use the value of expected outcomes to guide behavior in serotonin transporter knockout rats. Neurobiol Learn Mem 94:65–72

    Article  PubMed  CAS  Google Scholar 

  • Parvaz MA, Maloney T, Moeller SJ, Woicik PA, Alia-Klein N, Telang F, Wang G-J, Squires NK, Volkow ND, Goldstein RZ (2012) Sensitivity to monetary reward is most severely compromised in recently abstaining cocaine addicted individuals: a cross-sectional ERP study. Psychiatry Res Neuroimaging 203:75–82

    Article  Google Scholar 

  • Pickens CL, Setlow B, Saddoris MP, Gallagher M, Holland PC, Schoenbaum G (2003) Different roles for orbitofrontal cortex and basolateral amygdala in a reinforcer devaluation task. J Neurosci 23:11078–11084

    PubMed  CAS  Google Scholar 

  • Quirk GJ, Russo GK, Barron JL, Lebron K (2000) The role of ventromedial prefrontal cortex in the recovery of extinguished fear. J Neurosci 20:6225–6231

    PubMed  CAS  Google Scholar 

  • Rhodes SEV, Killcross SA (2004) Lesions of rat infralimbic cortex enhance recovery and reinstatement of an appetitive Pavlovian response. Learn Mem 11:611–616

    Article  PubMed  Google Scholar 

  • Rhodes SEV, Killcross SA (2007) Lesions of rat infralimbic cortex enhance renewal of extinguished Pavlovian responding. Eur J Neurosci 25:2498–2503

    Article  PubMed  CAS  Google Scholar 

  • Robbins TW, Everitt BJ (1999) Drug addiction: bad habits add up. Nature 398:567–570

    Article  PubMed  CAS  Google Scholar 

  • Robinson TE, Berridge KC (2000) The psychology and neurobiology of addiction: an incentive-sensitization view. Addiction 95:S91–S117

    PubMed  Google Scholar 

  • Robinson TE, Berridge KC (2008) Review. The incentive sensitization theory of addiction: some current issues. Phil Trans R Soc Lond B 363:3137–3146

    Article  Google Scholar 

  • Roesch MR, Takahashi Y, Gugsa N, Bissonette GB, Schoenbaum G (2007) Previous cocaine exposure makes rats hypersensitive to both delay and reward magnitude. J Neurosci 27:245–250

    Article  PubMed  CAS  Google Scholar 

  • Schilman EA, Klavir O, Winter C, Sohr R, Joel D (2010) The role of the striatum in compulsive behavior in intact and orbitofrontal-cortex-lesioned rats: possible involvement of the serotonergic system. Neuropsychopharmacology 35:1026–1039

    Article  PubMed  CAS  Google Scholar 

  • Schoenbaum G, Setlow B (2005) Cocaine makes actions insensitive to outcomes but not extinction: implications for altered orbitofrontal-amygdalar function. Cerebral Cortex 15:1162–1169

    Article  PubMed  Google Scholar 

  • Simon NW, Mendez IA, Setlow B (2007) Cocaine exposure causes long-term increases in impulsive choice. Behav Neurosci 121:543–549

    Article  PubMed  CAS  Google Scholar 

  • Stalnaker TA, Roesch MR, Franz TM, Burke KA, Schoenbaum G (2006) Abnormal associative encoding in orbitofrontal neurons in cocaine-experienced rats during decision-making. Eur J Neurosci 24:2643–2653

    Article  PubMed  Google Scholar 

  • Takahashi Y, Roesch MR, Stalnaker TA, Haney RZ, Calu DJ, Taylor AR, Burke KA, Schoenbaum G (2009) The orbitofrontal cortex and ventral tegmental area are necessary for learning from unexpected outcomes. Neuron 62:269–280

    Google Scholar 

  • Takahashi Y, Roesch MR, Stalnaker TA, Schoenbaum G (2007) Cocaine exposure shifts the balance of associative encoding from ventral to dorsolateral striatum. Front Integr Neurosci 1:11. doi:10.3389/neuro.07/011.2007

    Article  PubMed  Google Scholar 

  • Taylor JR, Horger BA (1999) Enhanced responding for conditioned reward produced by intra-accumbens amphetamine is potentiated after cocaine sensitization. Psychopharmacology 142:31–40

    Article  PubMed  CAS  Google Scholar 

  • Taylor JR, Jentsch JD (2001) Repeated intermittent administration of psychomotor stimulant drugs alters the acquisition of Pavlovian approach behavior in rats: differential effects of cocaine, d-amphetamine and 3,4-methylenedioxymethamphetamine (“ecstasy”). Biol Psychiatry 50:137–143

    Article  PubMed  CAS  Google Scholar 

  • Vanderschuren LJMJ, Everitt BJ (2004) Drug seeking becomes compulsive after prolonged cocaine self-administration. Science 305:1017–1019

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Gamo NJ, Yang Y, Jin LE, Wang XJ, Laubach M, Mazer JA, Lee D, Arnsten AF (2011) Neuronal basis of age-related working memory decline. Nature 476:210–213

    Article  PubMed  CAS  Google Scholar 

  • West EA, DesJardin JT, Gale K, Malkova L (2011) Transient inactivation of orbitofrontal cortex blocks reinforcer devaluation in macaques. J Neurosci 31:15128–15135

    Article  PubMed  CAS  Google Scholar 

  • Wimmer GE, Shohamy D (2011) The striatum and beyond: hippocampal contributions to decision making. In: Delgado M, Phelps EA, Robbins TW (eds) Attention and performance XXII. Oxford University Press, Oxford

    Google Scholar 

  • Wimmer GE, Shohamy D (2012) Preference by association: how memory mechanisms in the hippocampus bias decisions. Science 338:270–273

    Article  PubMed  CAS  Google Scholar 

  • Winstanley CA, Olausson P, Taylor JR, Jentsch JD (2010) Insight into the relationship between impulsivity and substance abuse from studies using animal models. Alcohol Clin Exp Res 34:1306–1318

    PubMed  Google Scholar 

  • Wyvell CL, Berridge KC (2001) Incentive sensitization by previous amphetamine exposure: increased cue-triggered “wanting” for sucrose reward. J Neurosci 21:7831–7840

    PubMed  CAS  Google Scholar 

  • Zapata A, Minney VL, Shippenberg TS (2010) Shift from goal-directed to habitual cocaine seeking after prolonged experience in rats. J Neurosci 30:15457–15463

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Intramural Research Program (G.S.) and grants from the National Institute on Drug Abuse (H.M.W. F30-DA033100, J.L.J. F32-DA031517). The opinions expressed in this article are the authors' own and do not reflect the view of the NIH/DHHS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey Schoenbaum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wied, H.M., Jones, J.L., Cooch, N.K. et al. Disruption of model-based behavior and learning by cocaine self-administration in rats. Psychopharmacology 229, 493–501 (2013). https://doi.org/10.1007/s00213-013-3222-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-013-3222-6

Keywords

Navigation