Skip to main content

Advertisement

Log in

Differential exploitation of the inertia tensor in multi-joint arm reaching

  • Review
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The identification of the kinaesthetic information used for directing 3D multi-joint arm movements toward a target remains an open question. Several psychophysical studies have suggested that the ability to perceive and control the spatial orientation of our limbs depends on the exploitation of the eigenvectors (e 3) of the inertia tensor (I ij ), which correspond to the arm rotational inertial axes. The present experiment aimed at investigating whether e 3 was used as a collective variable to direct the masses toward the target and hence to control the spatial accuracy of the final hand position. Natural, unconstrained, three-dimensional multi-joint reaching movements were submitted to alterations of forearm mass distribution. Given the existence of several “sensorimotor strategies” for the control of arm movements, the participants were a priori contrasted and ranged in groups according to their reliance on either visual or kinaesthetic information. The results indicated (1) the dependency of the arm’s directional control on I ij parameters, (2) a non-linear relationship between the performance predicted by the inertia tensor and the observed performance, depending on the deviation amplitude and (3) the presence of a large inter-individual variability suggesting the existence of different strategies, including proprioceptive compensation mechanisms. This study validates in unconstrained multi-joint arm movements the exploitation of the inertia tensor by the central nervous system, thus simplifying the coordination of the segments’ masses during reaching. The results also provide evidence for the existence of motor alternatives in exploiting proprioceptive information that may depend on spatial referencing modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adamovich SV, Berkinblit MB, Fookson O, Poizner H (1998) Pointing in 3D space to remembered targets. I. Kinesthetic vs visual target presentation. J Neurophysiol 79:2833–2846

    PubMed  CAS  Google Scholar 

  • Asch SE, Witkin HA (1992) Studies in space orientation. II. Perception of the upright with displaced visual fields and with body tilted (discussion 404–406). J Exp Psychol Gen 121:407–418

    Article  PubMed  CAS  Google Scholar 

  • Bringoux L, Marin L, Nougier V, Barraud PA, Raphel C (2000) Effects of gymnastics expertise on the perception of body orientation in the pitch dimension. J Vestib Res 10(6):251–258

    PubMed  CAS  Google Scholar 

  • Craig CM, Bourdin C (2002) Revisited: the inertia tensor as a proprioceptive invariant in humans. Neurosci Lett 317:106–110

    Article  PubMed  CAS  Google Scholar 

  • Darling WG, Gilchrist L (1991) Is there a preferred coordinate system for perception of hand orientation in three-dimensional space? Exp Brain Res 85:405–416

    Article  PubMed  CAS  Google Scholar 

  • Desmurget M, Jordan M, Prablanc C, Jeannerod M (1997) Constrained and unconstrained movements involve different control strategies. J Neurophysiol 77:1644–1650

    PubMed  CAS  Google Scholar 

  • Desmurget M, Pelisson D, Rossetti Y, Prablanc C (1998) From eye to hand: planning goal-directed movements. Neurosci Biobehav Rev 22:761–788

    Article  PubMed  CAS  Google Scholar 

  • Feldman AG, Latash ML (1982a) Afferent and efferent components of joint position sense; interpretation of kinaesthetic illusion. Biol Cybern 42:205–214

    PubMed  CAS  Google Scholar 

  • Feldman AG, Latash ML (1982b) Inversions of vibration-induced senso-motor events caused by supraspinal influences in man. Neurosci Lett 31:147–151

    Article  PubMed  CAS  Google Scholar 

  • Flanagan JR, Lolley S (2001) The inertial anisotropy of the arm is accurately predicted during movement planning. J Neurosci 21:1361–1369

    PubMed  CAS  Google Scholar 

  • Flash T, Hogan N (1985) The coordination of arm movements: an experimentally confirmed mathematical model. J Neurosci 5:1688–1703

    PubMed  CAS  Google Scholar 

  • Garrett SR, Pagano C, Austin G, Turvey MT (1998) Spatial and physical frames of reference in positioning a limb. Percept Psychophys 60:1206–1215

    PubMed  CAS  Google Scholar 

  • Ghez C, Gordon J, Ghilardi MF, Sainburg R (1994) Contributions of vision and proprioception to accuracy in limb movements. MIT, Cambridge, pp 549–564

    Google Scholar 

  • Ghez C, Gordon J, Ghilardi MF (1995) Impairments of reaching movements in patients without proprioception. II. Effects of visual information on accuracy. J Neurophysiol 73:361–372

    PubMed  CAS  Google Scholar 

  • Gordon J, Ghilardi MF, Cooper SE, Ghez C (1994) Accuracy of planar reaching movements. II. Systematic extent errors resulting from inertial anisotropy. Exp Brain Res 99:112–130

    Article  PubMed  CAS  Google Scholar 

  • Gribble PL, Mullin LI, Cothros N, Mattar A (2003) Role of cocontraction in arm movement accuracy. J Neurophysiol 89:2396–2405

    Article  PubMed  Google Scholar 

  • Hanavan EP (1964) A mathematical model of the humain body. AMRL TR 18:1–149

    Google Scholar 

  • Hogan N (1984) An organizing principle for a class of voluntary movements. J Neurosci 4:2745–2754

    PubMed  CAS  Google Scholar 

  • Isableu B, Ohlmann T, Cremieux J, Amblard B (1998) How dynamic visual field dependence-independence interacts with the visual contribution to postural control. Hum Mov Sci 17:367–391

    Article  Google Scholar 

  • Isableu B, Ohlmann T, Cremieux J, Amblard B (2003) Differential approach to strategies of segmental stabilisation in postural control. Exp Brain Res 150:208–221

    PubMed  Google Scholar 

  • Kalaska JF, Crammond DJ (1992) Cerebral cortical mechanisms of reaching movements. Science 255:1517–1523

    Article  PubMed  CAS  Google Scholar 

  • Kwon Y-H (2002) Flexibility of the experimental simulation approach to the analysis of human airborne movements: Body segment parameter estimation. In: Hong Y (eds) International research in sport biomechanics. Routledge, NewYork, pp 44–55

    Google Scholar 

  • McLeod B (1985) Field dependence as factor in sports with preponderance of open or closed skills. Percept Motor Skills 60:369–370

    PubMed  CAS  Google Scholar 

  • Oltman PK (1968) A portable rod-and-frame apparatus. Percept Mot Skills 26:503–506

    PubMed  CAS  Google Scholar 

  • Pagano CC (2000) The role of the inertia tensor in kinesthesis. Crit Rev Biomed Eng 28:231–236

    PubMed  CAS  Google Scholar 

  • Pagano CC, Turvey MT (1995) The inertia tensor as a basis for the perception of limb orientation. J Exp Psychol Hum Percept Perform 21:1070–1087

    Article  PubMed  CAS  Google Scholar 

  • Pagano CC, Garrett SR, Turvey MT (1996) Is limb proprioception a function of the limbs’ inertial eigenvectors? Ecol Psychol 43–69

  • Riley MA, Turvey MT (2001) Inertial constraints on limb proprioception are independent of visual calibration. J Exp Psychol Hum Percept Perform 27:438–455

    Article  PubMed  CAS  Google Scholar 

  • Riley MA, Pagano CC (2003) Inertial Eigenvectors play a role in proprioception: comment on Craig and Bourdin (2002). Ecol Psychol 15:229–240

    Article  Google Scholar 

  • Rossetti Y, Meckler C, Prablanc C (1994) Is there an optimal arm posture? Deterioration of finger localization precision and comfort sensation in extreme arm-joint postures. Exp Brain Res 99:131–136

    Article  PubMed  CAS  Google Scholar 

  • Rothwell JC, Traub MM, Day BL, Obeso JA, Thomas PK, Marsden CD (1982) Manual motor performance in a deafferented man. Brain 105(Pt 3):515–542 (see also pp3–42)

    Google Scholar 

  • Sabes PN, Jordan MI (1997) Obstacle avoidance and a perturbation sensitivity model for motor planning. J Neurosci 17:7119–7128

    PubMed  CAS  Google Scholar 

  • Sabes PN, Jordan MI, Wolpert DM (1998) The role of inertial sensitivity in motor planning. J Neurosci 18:5948–5957

    PubMed  CAS  Google Scholar 

  • Sainburg RL, Poizner H, Ghez C (1993) Loss of proprioception produces deficits in interjoint coordination. J Neurophysiol 70:2136–2147

    PubMed  CAS  Google Scholar 

  • Sainburg RL, Ghilardi MF, Poizner H, Ghez C (1995) Control of limb dynamics in normal subjects and patients without proprioception. J Neurophysiol 73:820–835

    PubMed  CAS  Google Scholar 

  • Sainburg RL, Ghez C, Kalakanis D (1999) Intersegmental dynamics are controlled by sequential anticipatory, error correction, and postural mechanisms. J Neurophysiol 81:1045–1056

    PubMed  CAS  Google Scholar 

  • Sanes JN, Shadmehr R (1995) Sense of muscular effort and somesthetic afferent information in humans. Can J Physiol Pharmacol 73:223–233

    PubMed  CAS  Google Scholar 

  • Soechting JF, Flanders M (1992) Moving in three-dimensional space: frames of reference, vectors, and coordinate systems. Annu Rev Neurosci 15:167–191

    Article  PubMed  CAS  Google Scholar 

  • van Beers RJ, Sittig AC, Denier van der Gon JJ (1998) The precision of proprioceptive position sense. Exp Brain Res 122:367–377

    Article  PubMed  Google Scholar 

  • Viviani P, Flash T (1995) Minimum-jerk, two-thirds power law, and isochrony: converging approaches to movement planning. J Exp Psychol Hum Percept Perform 21:32–53

    Article  PubMed  CAS  Google Scholar 

  • Vuillerme N, Danion F, Marin L, Boyadjian A, Prieur JM, Weise I, Nougier V (2001a) The effect of expertise in gymnastics on postural control. Neurosci Lett 303:83–86

    Article  PubMed  CAS  Google Scholar 

  • Vuillerme N, Teasdale N, Nougier V (2001b) The effect of expertise in gymnastics on proprioceptive sensory integration in human subjects. Neurosci Lett 311:73–76

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the French Fond National pour la Science (IUF 2002:2006), and by Enactive Interfaces, a network of excellence (IST contract #002114) of the Commission of the European Community, with additional support from the University of Paris Sud 11 (BQR-RV-2003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delphine Bernardin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernardin, D., Isableu, B., Fourcade, P. et al. Differential exploitation of the inertia tensor in multi-joint arm reaching. Exp Brain Res 167, 487–495 (2005). https://doi.org/10.1007/s00221-005-0161-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-005-0161-4

Keywords

Navigation