Skip to main content
Log in

How single-trial electrical neuroimaging contributes to multisensory research

Experimental Brain Research Aims and scope Submit manuscript

Abstract

This study details a method to statistically determine, on a millisecond scale and for individual subjects, those brain areas whose activity differs between experimental conditions, using single-trial scalp-recorded EEG data. To do this, we non-invasively estimated local field potentials (LFPs) using the ELECTRA distributed inverse solution and applied non-parametric statistical tests at each brain voxel and for each time point. This yields a spatio-temporal activation pattern of differential brain responses. The method is illustrated here in the analysis of auditory-somatosensory (AS) multisensory interactions in four subjects. Differential multisensory responses were temporally and spatially consistent across individuals, with onset at ~50 ms and superposition within areas of the posterior superior temporal cortex that have traditionally been considered auditory in their function. The close agreement of these results with previous investigations of AS multisensory interactions suggests that the present approach constitutes a reliable method for studying multisensory processing with the temporal and spatial resolution required to elucidate several existing questions in this field. In particular, the present analyses permit a more direct comparison between human and animal studies of multisensory interactions and can be extended to examine correlation between electrophysiological phenomena and behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Notes

  1. It is important to note that the summation of intracranial (estimated) LFPs is not subject to the same caveats as in the case of summing electric fields at the scalp (see, e.g. Molholm et al. 2002; Teder-Sälejärvi et al. 2002; Besle et al. 2004 for recent discussions)

References

  • Besle J, Fort A, Giard MH (2004) Interest and validity of the additive model in electrophysiological studies of multisensory interactions. Cogn Process 5:189–192

    Article  Google Scholar 

  • Calvert GA (2001) Crossmodal processing in the human brain: insights from functional neuroimaging studies. Cereb Cortex 11:1110–1123

    Article  PubMed  Google Scholar 

  • Fort A, Delpuech C, Pernier J, Giard MH (2002) Early auditory-visual interactions in human cortex during nonredundant target identification. Cogn Brain Res 14:20–30

    PubMed  Google Scholar 

  • Foxe JJ, Morocz IA, Murray MM, Higgins BA, Javitt DC, Schroeder CE (2000) Multisensory auditory–somatosensory interactions in early cortical processing revealed by high-density electrical mapping. Brain Res Cogn Brain Res 10:77–83

    Article  PubMed  Google Scholar 

  • Foxe JJ, Wylie GR, Martinez A, Schroeder CE, Javitt DC, Guilfoyle D, Ritter W, Murray MM (2002) Auditory-somatosensory multisensory processing in auditory association cortex: an fMRI study. J Neurophysiol 88:540–543

    PubMed  Google Scholar 

  • Foxe JJ, Molholm S, Mehta AS, Sehatpour P, Schwartz T (2004) Intracranial recordings in humans reveal auditory-visual multisensory interactions in early sensory cortices. In: 5th annual meeting of the international multisensory research forum. Sitges, Spain

  • Fu KMG, Foxe, JJ, Murray MM, Higgins BA, Javitt DC, Schroeder CE (2001) Cross-modality cued attention-dependent suppression of distracter visual input indexed by anticipatory parieto-occipital alpha-band oscillations. Cogn Brain Res 12:145–152

    Article  Google Scholar 

  • Fu KMG, Johnston TA, Shah AS, Arnold L, Smiley J, Hackett TA, Garraghty PE, Schroeder CE (2003) Auditory cortical neurons respond to somatosensory stimulation. J Neurosci 23:7510–7515

    PubMed  Google Scholar 

  • Giard MH, Peronnet F (1999) Auditory-visual integration during multimodal object recognition in humans: a behavioral and electrophysiological study. J Cogn Neurosci 11:473–490

    PubMed  Google Scholar 

  • Gobbelé R, Schürmann M, Forss N, Juottonen K, Buchner H, Hari R (2003) Activation of the human posterior and temporoparietal cortices during audiotactile interaction. Neuroimage 20:503–511

    Article  PubMed  Google Scholar 

  • Gonzalez Andino S, Michel CM, Thut G, Landis T, Grave de Peralta R (2005) Prediction of response speed by anticipatory high frequency oscillations in the human brain. Hum Brain Mapp 24:50–58

    Article  PubMed  Google Scholar 

  • Grave de Peralta-Menendez R, Gonzalez-Andino SL (1998) A critical analysis of linear inverse solutions to the neuroelectromagnetic inverse problem. IEEE Trans Biomed Eng 45:440–448

    Article  PubMed  Google Scholar 

  • Grave de Peralta Menendez R, Gonzalez Andino SL, Morand S, Michel CM, Landis T (2000) Imaging the electrical activity of the brain: ELECTRA. Hum Brain Mapp 9:1–12

    Article  PubMed  Google Scholar 

  • Grave de Peralta Menendez R, Murray MM, Michel CM, Martuzzi R, Gonzalez Andino SL (2004) Electrical neuroimaging based on biophysical constraints. Neuroimage 21:527–539

    Article  PubMed  Google Scholar 

  • Guthrie D, Buchwald JS (1991) Significance testing of difference potentials. Psychophysiology 28:240–244

    PubMed  Google Scholar 

  • Levänen S, Jousmäki V, Hari R (1998) Vibration-induced auditory-cortex activation in a congenitally deaf adult. Curr Biol 8:869–872

    Article  PubMed  Google Scholar 

  • Lütkenhöner B, Lammertmann C, Simoes C, Hari R (2002) Magnetoencephalographic correlates of audiotactile interaction. Neuroimage 15:509–522

    Article  PubMed  Google Scholar 

  • Matsuhashi M, Ikeda A, Ohara S, Matsumoto R, Yamamoto J, Takayama M, Satow T, Begum T, Usui K, Nagamine T, Mikuni N, Takahashi J, Miyamoto S, Fukuyama H, Shibasaki H (2004) Multisensory convergence at human temporo-parietal junction—epicortical recording of evoked responses. Clin Neurophysiol 115:1145–1160

    Article  PubMed  Google Scholar 

  • Michel CM, Murray MM, Lantz G, Gonzalez S, Spinelli L, Grave de Peralta R (2004) EEG source imaging (invited review). Clin Neurophysiol 115:2195–2222

    Article  PubMed  Google Scholar 

  • Miller J (1982) Divided attention: evidence for coactivation with redundant signals. Cogn Psychol 14:247–279

    Article  Google Scholar 

  • Molholm S, Ritter W, Murray MM, Javitt DC, Schroeder CE, Foxe JJ (2002) Multisensory auditory-visual interactions during early sensory processing in humans: a high-density electrical mapping study. Brain Res Cogn Brain Res 14:115–128

    PubMed  Google Scholar 

  • Molholm S, Ritter W, Javitt DC, Foxe JJ (2004) Multisensory visual-auditory object recognition in humans: a high-density electrical mapping study. Cereb Cortex 14:452–465

    Article  PubMed  Google Scholar 

  • Murray MM, Foxe JJ, Higgins BA, Javitt DC, Schroeder CE (2001) Visuo-spatial neural response interactions in early visual cortical processing during a simple reaction time task: a high-density electrical mapping study. Neuropsychologia 39:828–844

    Article  PubMed  Google Scholar 

  • Murray MM, Molholm S, Michel CM, Heslenfeld DJ, Ritter W, Javitt DC, Schroeder CE, Foxe JJ (2004a) Grabbing your ear: rapid auditory-somatosensory multisensory interactions in low-level sensory cortices are not constrained by stimulus alignment. Cereb Cortex doi:10.1093/cercor/bhh197

    Google Scholar 

  • Murray MM, Michel CM, Grave de Peralta R, Ortigue S, Brunet D, Gonzalez Andino S, Schnider A (2004b) Rapid discrimination of visual and multisensory memories revealed by electrical neuroimaging. Neuroimage 21:125–135

    Article  PubMed  Google Scholar 

  • Murray MM, Foxe DM, Javitt DC, Foxe JJ (2004c) Setting boundaries: brain dynamics of modal and amodal illusory shape completion in humans. J Neurosci 24:6898–6903

    Article  PubMed  Google Scholar 

  • Murray MM, Michel CM, Ortigue S, Blanke O, Spinelli L, Seeck M (2004d) Visuo-Somatosensory multisensory interactions: evidence from human intracranial recordings. In: 5th annual meeting of the international multisensory research forum. Sitges, Spain

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  PubMed  Google Scholar 

  • Rivier F, Clarke S (1997) Cytochrome oxidase, acetylcholinesterase, and NADPH-Diaphorase staining in human supratemporal and isular cortex: evidence for multiple auditory areas. Neuroimage 6:288–304

    Article  PubMed  Google Scholar 

  • Rorden C, Brett M (2000) Stereotaxic display of brain lesions. Behav Neurol 12:191–200

    PubMed  Google Scholar 

  • Schroeder CE, Foxe JJ (2002) The timing and laminar profile of converging inputs to multisensory areas of the macaque neocortex. Brain Res Cogn Brain Res 14:187–198

    Article  PubMed  Google Scholar 

  • Schroeder CE, Lindsley RW, Specht C, Marcovici A, Smiley JF, Javitt DC (2001) Somatosensory input to auditory association cortex in the macaque monkey. J Neurophysiol 85:1322–1327

    PubMed  Google Scholar 

  • Schroeder CE, Smiiley J, Fu KMG, McGinnis T, O’Connell MN, Hackett TA (2003) Anatomical mechanisms and functional implications of multisensory convergence in early cortical processing. Int J Psychophysiol 50:5–18

    Article  PubMed  Google Scholar 

  • Schroeder CE, Molholm S, Lakatos P, Ritter W, Foxe JJ (2004) Human-simian correspondence in the early cortical processing of multisensory cures. Cogn Process 5:140–151

    Article  Google Scholar 

  • Sokolov A, Pavlova M, Lutzenberger W, Birbaumer N (2004) Reciprocal modulation of neuromagnetic induced gamma activity by attention in the human visual and auditory cortex. Neuroimage 22:521–529

    Article  PubMed  Google Scholar 

  • Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme, New York

    Google Scholar 

  • Teder-Sälejärvi WA, McDonald JJ, Di Russo F, Hillyard SA (2002) An analysis of audio-visual crossmodal integration by means of event-related potential (ERP) recordings. Cogn Brain Res 14:106–114

    Article  Google Scholar 

Download references

Acknowledgements

The Swiss National Science Foundation (Grants 3152A0-100745, 3200BO-100606, and 3200BO-105680/1, IM2 White Paper on Brain Machines Interfaces) and NIMH (MH63434 and MH49334) provided financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolando Grave de Peralta Menendez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzalez Andino, S.L., Murray , M.M., Foxe, J.J. et al. How single-trial electrical neuroimaging contributes to multisensory research. Exp Brain Res 166, 298–304 (2005). https://doi.org/10.1007/s00221-005-2371-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-005-2371-1

Keywords

Navigation