Skip to main content
Log in

Depth perception in cerebellar and basal ganglia disease

Experimental Brain Research Aims and scope Submit manuscript

Abstract

There is increasing evidence that the cerebellum and the basal ganglia serve not only a role in motor control but also in visual perception. Patients with Parkinson’s disease (PD) as well as patients with cerebellar lesions exhibit impairments of vision that are not fully explained by ocular motor deficits. It is less clear to which extent these visual deficits contribute to an impaired control of visually guided movements. This study examined whether a dysfunction of the cerebellum or the basal ganglia induces impairments in depth perception, which affect action. We employed an illusionary display, the Ames trapezoidal window, to determine the ability of PD patients (n=10) and patients with spinocerebellar ataxia (SCA) (n=6) to process depth cues when estimating object slant. Participants either pointed to the edges of the window (motor judgement) or verbally indicated the perceived orientation of the display (verbal judgement). To control for ocular and limb motor deficits, participants judged the slant of a non-illusionary display in a second task. Slant estimation of the non-illusionary window was not impaired in either patient group when compared to control subjects (all P>0.2). In contrast, SCA as well as PD patients exhibited significantly greater slant estimation errors than controls when pointing to the illusionary window (P=0.005). In addition, both patient groups made larger errors than controls in their verbal judgements during binocular viewing of the illusion (P=0.005), but not during monocular viewing (P>0.2). In sum, the present findings point towards a role for both the basal ganglia and cerebellum for the processing of visual information about depth. Since the deficits were seen both in the context of action and perception and were only partially reconciled by the availability of binocular depth cues, we conclude that basal ganglia as well as cerebellar disease may affect the visual perception of depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Aglioti S, DeSouza JFX, Goodale MA (1993) Size-contrast illusions deceive the eye but not the hand. Curr Biol 5:679–685

    Article  Google Scholar 

  • Allen G, Buxton RB, Wong EC, Courchesne E (1997) Attentional activation of the cerebellum independent of motor involvement. Science 275:1940–1943

    Article  PubMed  CAS  Google Scholar 

  • Ames A (1950) Visual perception and the rotating trapezoid window. Psychological Monographs 65

  • Bandini F, Pierantozzi M, Bodis-Wollner I (2001) Parkinson’s disease changes the balance of onset and offset visual responses: an evoked potential study. Clin Neurophysiol 112:976–983

    Article  PubMed  CAS  Google Scholar 

  • Bodis-Wollner IG, Paulus W (1999) Visual and visual cognitive dysfunction in Parkinson’s disease: spatial and chromatic vision. Adv Neurol 80:383–388

    PubMed  CAS  Google Scholar 

  • Claeys KG, Orban GA, Dupont P, Sunaert S, Van Hecke P, De Schutter E (2003) Involvement of multiple functionally distinct cerebellar regions in visual discrimination: a human functional imaging study. Neuroimage 20:840–854

    Article  PubMed  Google Scholar 

  • Day JW, Schut LJ, Moseley ML, Durand AC, Ranum LP (2000) Spinocerebellar ataxia type 8: clinical features in a large family. Neurology 55:649–657

    PubMed  CAS  Google Scholar 

  • Diener H.C, Hore J, Ivry R, Dichgans J (1993) Cerebellar dysfunction of movement and perception. Can J Neurol Sci 20:S62–69

    PubMed  Google Scholar 

  • Donaldson IM, Hawthorne ME (1979) Coding of visual information by units in the cat cerebellar vermis. Exp Brain Res 34:27–48

    Article  PubMed  CAS  Google Scholar 

  • Fiez JA (1996) Cerebellar contributions to cognition. Neuron 16:13–15

    Article  PubMed  CAS  Google Scholar 

  • Fink GR, Dolan RJ, Halligan PW, Marshall JC, Frith CD (1997) Space-based and object-based visual attention: shared and specific neural domains. Brain 120:2013–2028

    Article  PubMed  Google Scholar 

  • Gamlin PD (2002) Neural mechanisms for the control of vergence eye movements. Ann N Y Acad Sci 956:264–272

    Article  PubMed  Google Scholar 

  • Ghez C, Krakauer J (2000) The organization of movement. In: Kandel ER et al (eds) Principles of neural science. McGraw-Hill, New York, pp 653–673

    Google Scholar 

  • Gibson JJ (1950) Perception of the visual world. Houghton-Mifflin, Boston

    Google Scholar 

  • Glickstein M (2000) How are visual areas of the brain connected to motor areas for the sensory guidance of movement? Trends Neurosci 23:613–617

    Article  PubMed  CAS  Google Scholar 

  • Gomez CM, Thompson RM, Gammack JT, Perlman SL, Dobyns WB, Truwit CL et al (1997) Spinocerebellar ataxia type 6: gaze-evoked and vertical nystagmus, Purkinje cell degeneration, and variable age of onset. Ann Neurol 42:933–950

    Article  PubMed  CAS  Google Scholar 

  • Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25

    Article  PubMed  CAS  Google Scholar 

  • Gulyas B, Roland PE (1994) Binocular disparity discrimination in human cerebral cortex: functional anatomy by positron emission tomography. Proc Natl Acad Sci USA 91:1239–1243

    Article  PubMed  CAS  Google Scholar 

  • Haggard P, Miall RC, Wade D, Fowler S, Richardson A, Anslow P et al (1995) Damage to cerebellocortical pathways after closed head injury: a behavioural and magnetic resonance imaging study. J Neurol Neurosurg Psychiatr 58:433–438

    PubMed  CAS  Google Scholar 

  • Holmes G (1939) The cerebellum of man (Hughlings Jackson memorial lecture). Brain 62:1–30

    Google Scholar 

  • Hutton JT, Morris JL (2001) Vision in Parkinson’s disease. Adv Neurol 86:279–88

    PubMed  CAS  Google Scholar 

  • Ivry RB, Diener HC (1991) Impaired velocity perception in patients with lesions of the cerebellum. J Cogn Neurosci 3:355–366

    Article  Google Scholar 

  • Klockgether T, Borutta M, Rapp H, Spieker S,Dichgans J (1995) A defect of kinesthesia in Parkinson’s disease. Mov Dis 10:460–465

    Article  CAS  Google Scholar 

  • Lee AC, Harris JP, Calvert JE (1998) Impairments of mental rotation in Parkinson’s disease. Neuropsychologia 36:109–114

    Article  PubMed  CAS  Google Scholar 

  • Leiner HC, Leiner AL, Dow RS (1993) Cognitive and language functions of the human cerebellum. Trends Neurosci 16:444–447

    Article  PubMed  CAS  Google Scholar 

  • Maschke M, Gomez CM, Tuite PJ, Konczak J (2003) Dysfunction of the basal ganglia, but not the cerebellum, impairs kinaesthesia. Brain 126:2312–2322

    Article  PubMed  Google Scholar 

  • Maschke M, Tuite PJ, Pickett K, Wachter T, Konczak J (2005) The effect of subthalamic nucleus stimulation on kinaesthesia in Parkinson's disease. J Neurol Neurosurg Psychiatry 76:569–571

    Article  PubMed  CAS  Google Scholar 

  • Miall RC, Imamizu H, Miyauchi S (2000) Activation of the cerebellum in co-ordinated eye and hand tracking movements: an fMRI study. Exp Brain Res 135:22–33

    Article  PubMed  CAS  Google Scholar 

  • Muller T, Woitalla D, Peters S, Kohla K, Przuntek H (2002) Progress of visual dysfunction in Parkinson’s disease. Acta Neurol Scand 105:256–260

    Article  PubMed  CAS  Google Scholar 

  • Nawrot M, Rizzo M (1995) Motion perception deficits from midline cerebellar lesions in human. Vision Res 35:723–731

    Article  PubMed  CAS  Google Scholar 

  • Nawrot M, Rizzo M (1998) Chronic motion perception deficits from midline cerebellar lesions in human. Vision Res 38:2219–2224

    Article  PubMed  CAS  Google Scholar 

  • Nixon PD, Passingham RE (1999) The cerebellum and cognition: cerebellar lesions do not impair spatial working memory or visual associative learning in monkeys. Eur J Neurosci 11:4070–4080

    Article  PubMed  CAS  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  PubMed  CAS  Google Scholar 

  • Pahwa R, Wilkinson S, Smith D, Lyons K, Miyawaki E, Koller WC (1997) High-frequency stimulation of the globus pallidus for the treatment of Parkinson’s disease. Neurology 49:249–53

    PubMed  CAS  Google Scholar 

  • Pekkonen E, Ahveninen J, Virtanen J, Teravainen H (1998) Parkinson’s disease selectively impairs preattentive auditory processing: an MEG study. Neuroreport 9:2949–2952

    PubMed  CAS  Google Scholar 

  • Philipova D, Gatchev G, Vladova T, Georgiev D (1997) Event-related potentials in parkinsonian patients under auditory discrimination tasks. Int J Psychophysiol 27:69–78

    Article  PubMed  CAS  Google Scholar 

  • Schmahmann JD, Sherman JC (1998) The cerebellar cognitive affective syndrome. Brain 121:561–579

    Article  PubMed  Google Scholar 

  • Schneider JS, Diamond SG, Markham CH (1987) Parkinson’s disease: sensory and motor problems in arms and hands. Neurology 37:951–956

    PubMed  CAS  Google Scholar 

  • Shibasaki H, Tsuji S, Kuroiwa Y (1979) Oculomotor abnormalities in Parkinson’s disease. Arch Neurol 36:360–364

    PubMed  CAS  Google Scholar 

  • Thier P, Haarmeier T, Treue S, Barash S (1999) Absence of a common functional denominator of visual disturbances in cerebellar disease. Brain 122:2133–2146

    Article  PubMed  Google Scholar 

  • Trouillas P, Takayanagi T, Hallett M, Currier RD, Subramony SH, Wessel K et al (1997) International Cooperative Ataxia Rating Scale for pharmacological assessment of the cerebellar syndrome. J Neurol Sci 145:205–211

    Article  PubMed  CAS  Google Scholar 

  • White OB, Saint-Cyr JA, Tomlinson RD, Sharpe JA (1983) Ocular motor deficits in Parkinson’s disease. II. Control of the saccadic and smooth pursuit systems. Brain 106:571–587

    PubMed  Google Scholar 

  • Yonas A, Cleaves WT, Pettersen L (1978) Development of sensitivity to pictorial depth. Science 200:77–79

    Article  PubMed  CAS  Google Scholar 

  • Zia S, Cody F, O’Boyle D (2000) Joint position sense is impaired by Parkinson’s disease. Ann Neurol 47:218–228

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by a grant of the Deutsche Forschungsgemeinschaft (DFG) to MM (DFG MA 2209/3-1), by grants from the National Institute of Health to CMG (NIH RO1 NS37211) and by grants from the Minnesota Medical Foundation and the College of Education and Human Development. We sincerely thank all patients, who came from several Midwestern states, for their participation. Our thanks are extended to Carly Salminen of the Sensorimotor Control Laboratory for her help in collecting and analysing the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Maschke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maschke, M., Gomez, C.M., Tuite, P.J. et al. Depth perception in cerebellar and basal ganglia disease. Exp Brain Res 175, 165–176 (2006). https://doi.org/10.1007/s00221-006-0535-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-006-0535-2

Keywords

Navigation