Skip to main content
Log in

Visual cortex activation in kinesthetic guidance of reaching

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The purpose of this research was to determine the cortical circuit involved in encoding and controlling kinesthetically guided reaching movements. We used 15O-butanol positron emission tomography in ten blindfolded able-bodied volunteers in a factorial experiment in which arm (left/right) used to encode target location and to reach back to the remembered location and hemispace of target location (left/right side of midsagittal plane) varied systematically. During encoding of a target the experimenter guided the hand to touch the index fingertip to an external target and then returned the hand to the start location. After a short delay the subject voluntarily moved the same hand back to the remembered target location. SPM99 analysis of the PET data contrasting left versus right hand reaching showed increased (P < 0.05, corrected) neural activity in the sensorimotor cortex, premotor cortex and posterior parietal lobule (PPL) contralateral to the moving hand. Additional neural activation was observed in prefrontal cortex and visual association areas of occipital and parietal lobes contralateral and ipsilateral to the reaching hand. There was no statistically significant effect of target location in left versus right hemispace nor was there an interaction of hand and hemispace effects. Structural equation modeling showed that parietal lobe visual association areas contributed to kinesthetic processing by both hands but occipital lobe visual areas contributed only during dominant hand kinesthetic processing. This visual processing may also involve visualization of kinesthetically guided target location and use of the same network employed to guide reaches to visual targets when reaching to kinesthetic targets. The present work clearly demonstrates a network for kinesthetic processing that includes higher visual processing areas in the PPL for both upper limbs and processing in occipital lobe visual areas for the dominant limb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

fMRI:

Functional magnetic resonance imaging

PET:

Positron emission tomography

PPL:

Posterior parietal lobule

SPL:

Superior parietal lobule

IPL:

Inferior parietal lobule

rCBF:

Regional cerebral blood flow

SPM:

Statistical parametric mapping

References

  • Agnew JA, Zeffiro TA, Eden GF (2004) Left hemisphere specialization for the control of voluntary movement rate. Neuroimage 22(1):289–303

    Article  PubMed  Google Scholar 

  • Alary F, Simoes C, Jousmaki V, Forss N, Hari R (2002) Cortical activation associated with passive movements of the human index finger: an MEG study. Neuroimage 15(3):691–698

    Article  PubMed  CAS  Google Scholar 

  • Astafiev SV, Stanley CM, Shulman GL, Corbetta M (2004) Extrastriate body area in human occipital cortex responds to the performance of motor actions. [see comment]. Nat Neurosci 7(5):542–548

    Article  PubMed  CAS  Google Scholar 

  • Bard C, Turrell Y, Fleury M, Teasdale N, Lamarre Y, Martin O (1999) Deafferentation and pointing with visual double-step perturbations. Exp Brain Res 125(4):410–416

    Article  PubMed  CAS  Google Scholar 

  • Baud-Bovy G, Viviani P (1998) Pointing to kinesthetic targets in space. J Neurosci 18(4):1528–1545

    PubMed  CAS  Google Scholar 

  • Baud-Bovy G, Viviani P (2004) Amplitude and direction errors in kinesthetic pointing. Exp Brain Res 157(2):197–214

    Article  PubMed  Google Scholar 

  • Bremmer F, Schlack A, Shah NJ, Zafiris O, Kubischik M, Hoffmann K, Zilles K, Fink GR (2001) Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys. [see comment]. Neuron 29(1):287–296

    Article  PubMed  CAS  Google Scholar 

  • Brett M, Anton J-L, Valabregue R, Poline J-B (2002) Region of interest analysis using an SPM toolbox. Sendai, Japan

    Google Scholar 

  • Butler AJ, Fink GR, Dohle C, Wunderlich G, Tellmann L, Seitz RJ, Zilles K, Freund H-J (2004) Neural mechanisms underlying reaching for remembered targets cued kinesthetically or visually in left or right hemispace. Hum Brain Mapp 21:165–177

    Article  PubMed  Google Scholar 

  • Cohen YE, Andersen RA (2002) A common reference frame for movement plans in the posterior parietal cortex. Nat Rev Neurosci 3(7):553–562

    Article  PubMed  CAS  Google Scholar 

  • Corbetta M, Miezin FM, Shulman GL, Petersen SE (1993) A PET study of visuospatial attention. J Neurosci 13(3):1202–1226

    PubMed  CAS  Google Scholar 

  • Darling WG, Bartelt R (2003) Kinesthetic perception of visually specified axes. Exp Brain Res 149(1):40–47

    PubMed  Google Scholar 

  • Darling WG, Hondzinski JM (1997) Visual perceptions of vertical and intrinsic longitudinal axes. Exp Brain Res 116(3):485–492

    Article  PubMed  CAS  Google Scholar 

  • Darling WG, Hondzinski JM (1999) Kinesthetic perceptions of earth- and body-fixed axes. Exp Brain Res 126:417–430

    Article  PubMed  CAS  Google Scholar 

  • Darling WG, Miller GF (1993) Transformations between visual and kinesthetic coordinate systems in reaches to remembered object locations and orientations. Exp Brain Res 93(3):534–547

    Article  PubMed  CAS  Google Scholar 

  • Darling WG, Pizzimenti MA (2001) A coordinate system for visual motion perception. Exp Brain Res 141(2):174–183

    Article  PubMed  CAS  Google Scholar 

  • Darling WG, Williams TE (1997) Kinesthetic perceptions of intrinsic anterior-posterior axes. Exp Brain Res 117(3):465–471

    Article  PubMed  CAS  Google Scholar 

  • Darling WG, Butler AJ, Williams TE (1996) Visual perceptions of head-fixed and trunk-fixed anterior/posterior axes. Exp Brain Res 112(1):127–134

    Article  PubMed  CAS  Google Scholar 

  • Darling WG, Bartelt R, Rizzo M (2004) Unilateral posterior parietal lobe lesions disrupt kinaesthetic representation of forearm orientation. J Neurol Neurosurg Psychiatry 75(3):428–435

    Article  PubMed  CAS  Google Scholar 

  • Dassonville P, Zhu XH, Uurbil K, Kim SG, Ashe J (1997) Functional activation in motor cortex reflects the direction and the degree of handedness. [erratum appears in Proc Natl Acad Sci U S A 1998 Sep 15;95(19):11499]. Proceedings of the National Academy of Sciences of the United States of America 94(25):14015–14018

  • Desmurget M, Grafton S (2000) Forward modeling allows feedback control for fast reaching movements. Trends Cogn Sci 4(11):423–431

    Article  PubMed  Google Scholar 

  • Desmurget M, Grea H, Grethe JS, Prablanc C, Alexander GE, Grafton ST (2001) Functional anatomy of nonvisual feedback loops during reaching: a positron emission tomography study. J Neurosci 21(8):2919–2928

    PubMed  CAS  Google Scholar 

  • Downing PE, Jiang Y, Shuman M, Kanwsiher N (2001) A cortical area selective for visual processing of the human body. Science 293:2470–2473

    Article  PubMed  CAS  Google Scholar 

  • Evans AC, Kamber M, Collins DL, MacDonald D (1994) An MRI-based probabilistic atlas of neuroanatomy. In: Shorvon S, Fish D, Andermann F, Bydder G, Stefan H (eds) Magnetic resonance imaging and epilepsy, pp 263–274

  • Friston KJ (1997) Testing for anatomically specified regional effects. Hum Brain Mapp 5(2):133–136

    Article  PubMed  CAS  Google Scholar 

  • Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15(4):870–878

    Article  PubMed  Google Scholar 

  • Johnson-Frey SH, Newman-Norlund R, Grafton ST (2005) A distributed left hemisphere network active during planning of everyday tool use skills. Cerebral Cortex 15(6):681–695

    Article  PubMed  Google Scholar 

  • Lacquaniti F, Perani D, Guigon E, Bettinardi V, Carrozzo M, Grassi F, Rossetti Y, Fazio F (1997) Visuomotor transformations for reaching to memorized targets: a PET study. Neuroimage 5(2):129–146

    Article  PubMed  CAS  Google Scholar 

  • Lancaster JL, Woldorff MG, Parsons LM, Liotti M, Freitas CS, Rainey L, Kochunov PV, Nickerson D, Mikiten SA, Fox PT (2000) Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp 10(3):120–131

    Article  PubMed  CAS  Google Scholar 

  • Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH (2003) An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage 19(3):1233–1239

    Article  PubMed  Google Scholar 

  • Muhlau M, Hermsdorfer J, Goldenberg G, Wohlschlager AM, Castrop F, Stahl R, Rottinger M, Erhard P, Haslinger B, Ceballos-Baumann AO et al (2005) Left inferior parietal dominance in gesture imitation: an fMRI study. Neuropsychologia 43(7):1086–1098

    Article  PubMed  Google Scholar 

  • Netz J, Ziemann U, Homberg V (1995) Hemispheric asymmetry of transcallosal inhibition in man. Exp Brain Res 104(3):527–533

    Article  PubMed  CAS  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  PubMed  CAS  Google Scholar 

  • Peelen MV, Downing PE (2005) Is the extrastriate body area involved in motor actions?[comment]. Nature Neuroscience 8(2):125; author reply 125–126

    Google Scholar 

  • Pellijeff A, Bonilha L, Morgan PS, McKenzie K, Jackson SR (2006) Parietal updating of limb posture: An event-related fMRI study. Neuropsychologia 44(13):2685–2690

    Article  PubMed  Google Scholar 

  • Prado J, Clavagnier S, Otzenberger H, Scheiber C, Kennedy H, Perenin MT (2005) Two cortical systems for reaching in central and peripheral vision. Neuron 48(5):849–858

    Article  PubMed  CAS  Google Scholar 

  • Prather SC, Votaw JR, Sathian K (2004) Task-specific recruitment of dorsal and ventral visual areas during tactile perception. Neuropsychologia 42(8):1079–1087

    Article  PubMed  CAS  Google Scholar 

  • Rutten GJ, Ramsey NF, van Rijen PC, Alpherts WC, van Veelen CW (2002) FMRI-determined language lateralization in patients with unilateral or mixed language dominance according to the Wada test. Neuroimage 17(1):447–460

    Article  PubMed  CAS  Google Scholar 

  • Schluter ND, Krams M, Rushworth MFS, Passingham RE (2001) Cerebral dominance for action in the human brain: the selection of actions. Neuropsychologia 39(2):105

    Article  PubMed  CAS  Google Scholar 

  • Seitz RJ, Knorr U, Azari HH, Freund H-J (1999) Visual network activation in recovery from sensorimotor stroke. Restor Neurol Neurosci 14(1):25–33

    PubMed  Google Scholar 

  • Simoes C, Alary F, Forss N, Hari R (2002) Left-hemisphere-dominant SII activation after bilateral median nerve stimulation. Neuroimage 15(3):686–690

    Article  PubMed  Google Scholar 

  • Soechting JF, Flanders M (1989) Sensorimotor representations for pointing to targets in 3-D space. J Neurophysiol 62(2):582–594

    PubMed  CAS  Google Scholar 

  • Solodkin A, Hlustik P, Chen EE, Small SL (2004) Fine modulation in network activation during motor execution and motor imagery. Cereb Cortex 14:1246–1255

    Article  PubMed  Google Scholar 

  • Toni I, Rushworth MF, Passingham RE (2001) Neural correlates of visuomotor associations. Spatial rules compared with arbitrary rules. Exp Brain Res 141(3):359–369

    Article  PubMed  CAS  Google Scholar 

  • Tsujimoto S, Sawaguchi T (2004) Properties of delay-period neuronal activity in the primate prefrontal cortex during memory- and sensory-guided saccade tasks. Eur J Neurosci 19(2):447–457

    Article  PubMed  Google Scholar 

  • Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1):273–289

    Article  PubMed  CAS  Google Scholar 

  • Ullman JB. 1996. Structural equation modeling. In: Tabachnick BG, Fidell LS (eds) Using multivariate statistics. 3rd edn. HarperCollins College Publishers, New York, pp 709–819

    Google Scholar 

  • Vercher JL, Magenes G, Prablanc C, Gauthier GM (1994) Eye-head-hand coordination in pointing at visual targets: spatial and temporal analysis. Exp Brain Res 99(3):507–523

    Article  PubMed  CAS  Google Scholar 

  • Weiss PH, Marshall JC, Wunderlich G, Tellmann L, Halligan PW, Freund HJ, Zilles K, Fink GR (2000) Neural consequences of acting in near versus far space: a physiological basis for clinical dissociations. Brain 12:2531–2541

    Article  Google Scholar 

  • Winstein CJ, Grafton ST, Pohl PS (1997) Motor task difficulty and brain activity: investigation of goal-directed reciprocal aiming using positron emission tomography. J Neurophysiol 77(3):1581–1594

    PubMed  CAS  Google Scholar 

  • Zangaladze A, Epstein CM, Grafton ST, Sathian K (1999) Involvement of visual cortex in tactile discrimination of orientation. Nature 401(6753):587–590

    Article  PubMed  CAS  Google Scholar 

  • Zhuang J, LaConte S, Peltier S, Zhang K, Hu X (2005) Connectivity exploration with structural equation modeling: an fMRI study of bimanual motor coordination. NeuroImage 25(2):462

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Support for this study was provided by the Deutsche Forschungsgemeinschaft. Andrew Butler was recipient of a fellowship. The robot was kindly provided by Kawasaki Robotics GmbH, Germany. We thank the volunteers for their participation. The assistance of M. Lang, L. Theelen, and S. Schaden for their help with PET tracer production and data acquisition is gratefully acknowledged. We are also grateful to N. J. Shah and H. Herzog for their advice on MR and PET methodology. Finally, we would like to thank G. Fink, C. Dohle, and H.-J. Freund for their thoughtful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. G. Darling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darling, W.G., Seitz, R.J., Peltier, S. et al. Visual cortex activation in kinesthetic guidance of reaching. Exp Brain Res 179, 607–619 (2007). https://doi.org/10.1007/s00221-006-0815-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-006-0815-x

Keywords

Navigation