Skip to main content

Advertisement

Log in

A computational neuroanatomy for motor control

Experimental Brain Research Aims and scope Submit manuscript

Abstract

The study of patients to infer normal brain function has a long tradition in neurology and psychology. More recently, the motor system has been subject to quantitative and computational characterization. The purpose of this review is to argue that the lesion approach and theoretical motor control can mutually inform each other. Specifically, one may identify distinct motor control processes from computational models and map them onto specific deficits in patients. Here we review some of the impairments in motor control, motor learning and higher-order motor control in patients with lesions of the corticospinal tract, the cerebellum, parietal cortex, the basal ganglia, and the medial temporal lobe. We attempt to explain some of these impairments in terms of computational ideas such as state estimation, optimization, prediction, cost, and reward. We suggest that a function of the cerebellum is system identification: to build internal models that predict sensory outcome of motor commands and correct motor commands through internal feedback. A function of the parietal cortex is state estimation: to integrate the predicted proprioceptive and visual outcomes with sensory feedback to form a belief about how the commands affected the states of the body and the environment. A function of basal ganglia is related to optimal control: learning costs and rewards associated with sensory states and estimating the “cost-to-go” during execution of a motor task. Finally, functions of the primary and the premotor cortices are related to implementing the optimal control policy by transforming beliefs about proprioceptive and visual states, respectively, into motor commands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agostino R, Sanes JN, Hallett M (1996) Motor skill learning in Parkinson’s disease. J Neurol Sci 139:218–226

    Article  PubMed  CAS  Google Scholar 

  • Bahill AT, Clark MR, Stark L (1975) Dynamic overshoot in saccadic eye movements is caused by neurological control signed reversals. Exp Neurol 48:107–122

    Article  PubMed  CAS  Google Scholar 

  • Barbarulo AM, Grossi D, Merola S, Conson M, Trojano L (2007) On the genesis of unilateral micrographia of the progressive type. Neuropsychologia 45:1685–1696

    Article  PubMed  Google Scholar 

  • Bastian AJ, Zackowski KM, Thach WT (2000) Cerebellar ataxia: torque deficiency or torque mismatch between joints? J Neurophysiol 83:3019–3030

    PubMed  CAS  Google Scholar 

  • Beer RF, Dewald JP, Rymer WZ (2000) Deficits in the coordination of multijoint arm movements in patients with hemiparesis: evidence for disturbed control of limb dynamics. Exp Brain Res 131:305–319

    Article  PubMed  CAS  Google Scholar 

  • Bernier PM, Chua R, Bard C, Franks IM (2006) Updating of an internal model without proprioception: a deafferentation study. Neuroreport 17:1421–1425

    Article  PubMed  Google Scholar 

  • Caramazza A (1986) On drawing inferences about the structure of normal cognitive systems from the analysis of patterns of impaired performance: the case for single-patient studies. Brain Cogn 5:41–66

    Article  PubMed  CAS  Google Scholar 

  • Cavaco S, Anderson SW, Allen JS, Castro-Caldas A, Damasio H (2004) The scope of preserved procedural memory in amnesia. Brain 127:1853–1867

    Article  PubMed  Google Scholar 

  • Chen H, Hua SE, Smith MA, Lenz FA, Shadmehr R (2006) Effects of human cerebellar thalamus disruption on adaptive control of reaching. Cereb Cortex 16:1462–1473

    Article  PubMed  Google Scholar 

  • Collewijn H, Erkelens CJ, Steinman RM (1988) Binocular co-ordination of human horizontal saccadic eye movements. J Physiol 404:157–182

    PubMed  CAS  Google Scholar 

  • Corkin S (1968) Acquisition of motor skill after bilateral medial temporal-lobe excision. Neuropsychologia 6:255–265

    Article  Google Scholar 

  • Desmurget M, Epstein CM, Turner RS, Prablanc C, Alexander GE, Grafton ST (1999) Role of the posterior parietal cortex in updating reaching movements to a visual target. Nature Neurosci 2:563–567

    Article  PubMed  CAS  Google Scholar 

  • Diedrichsen J (2007) Optimal task-dependent changes of bimanual feedback control and adaptation. Curr Biol 17:1675–1679

    Article  PubMed  CAS  Google Scholar 

  • Dijkerman HC, McIntosh RD, Anema HA, de Haan EH, Kappelle LJ, Milner AD (2006) Reaching errors in optic ataxia are linked to eye position rather than head or body position. Neuropsychologia 44:2766–2773

    Article  PubMed  CAS  Google Scholar 

  • Domkin D, Laczko J, Djupsjobacka M, Jaric S, Latash ML (2005) Joint angle variability in 3D bimanual pointing: uncontrolled manifold analysis. Exp Brain Res 163:44–57

    Article  PubMed  Google Scholar 

  • Fitts PM (1954) The information capacity of the human motor system in controlling the amplitude of movement. J Exp Psychol 47:381–391

    Google Scholar 

  • Flash T, Hogan N (1985) The coordination of arm movements: an experimentally confirmed mathematical model. J Neurosci 5:1688–1703

    PubMed  CAS  Google Scholar 

  • Gabrieli JDE, Corkin S, Mickel SF, Growdon JH (1993) Intact acquisition and long-term retention of mirror-tracing skill in Alzheimer’s disease and in global amnesia. Behav Neurosci 107:899–910

    Article  PubMed  CAS  Google Scholar 

  • Gabrieli JDE, Stebbins GT, Singh J, Willingham DB, Goetz CG (1997) Intact mirror-tracing and impaired rotary-pursuit skill learning in patients with Huntington’s disease: evidence for dissociable memory systems in skill learning. Neuropsychology 11:272–281

    Article  PubMed  CAS  Google Scholar 

  • Girard B, Berthoz A (2005) From brainstem to cortex: computational models of saccade generation circuitry. Prog Neurobiol 77:215–251

    PubMed  CAS  Google Scholar 

  • Grea H, Pisella L, Rossetti Y, Desmurget M, Tilikete C, Grafton S, Prablanc C, Vighetto A (2002) A lesion of the posterior parietal cortex disrupts on-line adjustments during aiming movements. Neuropsychologia 40:2471–2480

    Article  PubMed  Google Scholar 

  • Guthrie BL, Porter JD, Sparks DL (1983) Corollary discharge provides accurate eye position information to the oculomotor system. Science 221:1193–1195

    Article  PubMed  CAS  Google Scholar 

  • Harris CM, Wolpert DM (2006) The main sequence of saccades optimizes speed-accuracy trade-off. Biol Cybern 95:21–29

    Article  PubMed  Google Scholar 

  • Harris CM, Wolpert DM (1998) Signal-dependent noise determines motor planning. Nature 394:780–784

    Article  PubMed  CAS  Google Scholar 

  • Hopp JJ, Fuchs AF (2004) The characteristics and neuronal substrate of saccadic eye movement plasticity. Prog Neurobiol 72:27–53

    Article  PubMed  Google Scholar 

  • Hwang EJ, Shadmehr R (2005) Internal models of limb dynamics and the encoding of limb state. J Neural Eng 2:S266–S278

    Article  PubMed  Google Scholar 

  • Izawa J, Rane T, Donchin O, Shadmehr R (2008) Motor adaptation as a process of reoptimization. J Neurosci (in press)

  • Jax SA, Rosenbaum DA (2007) Hand path priming in manual obstacle avoidance: evidence that the dorsal stream does not only control visually guided actions in real time. J Exp Psychol Hum Percept Perform 33:425–441

    Article  PubMed  Google Scholar 

  • Jones KE, Hamilton AF, Wolpert DM (2002) Sources of signal-dependent noise during isometric force production. J Neurophysiol 88:1533–1544

    Article  PubMed  Google Scholar 

  • Kakei S, Hoffman DS, Strick PL (2001) Direction of action is represented in the ventral premotor cortex. Nature Neurosci 4:1020–1025

    Article  PubMed  CAS  Google Scholar 

  • Kawato M, Gomi H (1992) A computational model of four regions of the cerebellum based on feedback-error learning. Biol Cybern 68:95–103

    Article  PubMed  CAS  Google Scholar 

  • Keller EL, Robinson DA (1971) Absence of a stretch reflex in extraocular muscles of the monkey. J Neurophysiol 34:908–919

    PubMed  CAS  Google Scholar 

  • Kording K (2007) Decision theory: what “should” the nervous system do? Science 318:606–610

    Article  PubMed  CAS  Google Scholar 

  • Kording KP, Fukunaga I, Howard IS, Ingram JN, Wolpert DM (2004) A neuroeconomics approach to inferring utility functions in sensorimotor control. PLoS Biol 2:e330

    Article  PubMed  CAS  Google Scholar 

  • Kording KP, Tenenbaum JB, Shadmehr R (2007) The dynamics of memory as a consequence of optimal adaptation to a changing body. Nat Neurosci 10:779–786

    Article  PubMed  CAS  Google Scholar 

  • Kording KP, Wolpert DM (2004) Bayesian integration in sensorimotor learning. Nature 427:244–247

    Article  PubMed  CAS  Google Scholar 

  • Krakauer JW, Ghilardi MF, Ghez C (1999) Independent learning of internal models for kinematic and dynamic control of reaching. Nature Neurosci 2:1026–1031

    Article  PubMed  CAS  Google Scholar 

  • Krakauer JW, Pine ZM, Ghilardi MF, Ghez C (2000) Learning of visuomotor transformations for vectorial planning of reaching trajectories. J Neurosci 20:8916–8924

    PubMed  CAS  Google Scholar 

  • Kunesch E, Binkofski F, Steinmetz H, Freund HJ (1995) The pattern of motor deficits in relation to the site of stroke lesions. Eur Neurol 35:20–26

    PubMed  CAS  Google Scholar 

  • Liu D, Todorov E (2007) Evidence for the flexible sensorimotor strategies predicted by optimal feedback control. J Neurosci 27:9354–9368

    Article  PubMed  CAS  Google Scholar 

  • Marr D (1982) Vision: a computational investigation into the human representation and processing of visual information. Henry Holt

  • Martin TA, Keating JG, Goodkin HP, Bastian AJ, Thach WT (1996) Throwing while looking through prisms. I. Focal olivocerebellar lesions impair adaptation. Brain 119:1183–1198

    Article  PubMed  Google Scholar 

  • Maschke M, Gomez CM, Ebner TJ, Konczak J (2004) Hereditary cerebellar ataxia progressively impairs force adaptation during goal-directed arm movements. J Neurophysiol 91:230–238

    Article  PubMed  Google Scholar 

  • Mazzoni P, Hristova A, Krakauer JW (2007) Why don’t we move faster? Parkinson’s disease, movement vigor, and implicit motivation. J Neurosci 27:7105–7116

    Article  PubMed  CAS  Google Scholar 

  • Miall RC, Christensen LOD, Owen C, Stanley J (2007) Disruption of state estimation in the human lateral cerebellum. PLoS Biol 5:e316

    Article  PubMed  CAS  Google Scholar 

  • Milner B (1962) Les troubles de la memoire accompagnant des lesions hippocampiques bilaterales. In: Physiologie de l’Hippocampe, Colloques Internationaux No. 107. CNRS, Paris, pp 257–272

  • Milner B, Squire LR, Kandel ER (1998) Cognitive neuroscience and the study of memory. Neuron 20:445–468

    Article  PubMed  CAS  Google Scholar 

  • Mishkin M, Malamut B, Bachevalier J (1984) Memories and habits: two neural systems. In: Lynch G, McGaugh J (eds) Neurobiology of learning and memory. Guilford Press, pp 65–77

  • Morasso P (1981) Spatial control of arm movements. Exp Brain Res 42:223–227

    Article  PubMed  CAS  Google Scholar 

  • Nowak DA, Timmann D, Hermsdorfer J (2007) Dexterity in cerebellar agenesis. Neuropsychologia 45:696–703

    Article  PubMed  Google Scholar 

  • Ohyama T, Nores WL, Murphy M, Mauk MD (2003) What the cerebellum computes. Trends Neurosci 26:222–227

    Article  PubMed  CAS  Google Scholar 

  • Optican LM (2005) Sensorimotor transformation for visually guided saccades. Ann NY Acad Sci 1039:132–148

    Article  PubMed  Google Scholar 

  • Optican LM, Quaia C (2002) Distributed model of collicular and cerebellar function during saccades. Ann NY Acad Sci 956:164–177

    Article  PubMed  Google Scholar 

  • Packard MG, McGaugh JL (1992) Double dissociation of fornix and caudate nucleus lesions on acquisition of two water maze tasks: further evidence for multiple memory systems. Behav Neurosci 106:439–446

    Article  PubMed  CAS  Google Scholar 

  • Perenin MT, Vighetto A (1988) Optic ataxia: a specific disruption in visuomotor mechanisms. I. Different aspects of the deficit in reaching for objects. Brain 111(Pt 3):643–674

    Article  PubMed  Google Scholar 

  • Pinker S, Ullman MT (2002) The past and future of the past tense. Trends Cogn Sci 6:456–463

    Article  PubMed  Google Scholar 

  • Porter R, Lemon R (1995) Corticospinal function and voluntary movement. Clarendon Press, Oxford

    Google Scholar 

  • Quaia C, Pare M, Wurtz RH, Optican LM (2000) Extent of compensation for variations in monkey saccadic eye movements. Exp Brain Res 132:39–51

    Article  PubMed  CAS  Google Scholar 

  • Raghavan P, Krakauer JW, Gordon AM (2006) Impaired anticipatory control of fingertip forces in patients with a pure motor or sensorimotor lacunar syndrome. Brain 129:1415–1425

    Article  PubMed  Google Scholar 

  • Raymond JL, Lisberger SG, Mauk MD (1996) The cerebellum: a neuronal learning machine? Science 272:1126–1131

    Article  PubMed  CAS  Google Scholar 

  • Rizzolatti G, Luppino G (2001) The cortical motor system. Neuron 31:889–901

    Article  PubMed  CAS  Google Scholar 

  • Robinson DA (1975) Oculomotor control signals. In: BachyRita P, Lennerstrand G (eds) Basic mechanisms of ocular motility and their clinical implications. Pergamon, Oxford, pp 337–374

    Google Scholar 

  • Rushworth MF, Nixon PD, Passingham RE (1997) Parietal cortex and movement. I. Movement selection and reaching. Exp Brain Res 117:292–310

    Article  PubMed  CAS  Google Scholar 

  • Sainburg RL, Ghilardi MF, Poizner H, Ghez C (1995) Control of limb dynamics in normal subjects and patients without proprioception. J Neurophysiol 73:820–835

    PubMed  CAS  Google Scholar 

  • Sanes JN, Dimitrov B, Hallett M (1990) Motor learning in patients with cerebellar dysfunction. Brain 113:103–120

    Article  PubMed  Google Scholar 

  • Scheidt RA, Ghez C (2007) Separate adaptive mechanisms for controlling trajectory and final position in reaching. J Neurophysiol 98:3600–3613

    Article  PubMed  Google Scholar 

  • Scholz JP, Schoner G (1999) The uncontrolled manifold concept: identifying control variables for a functional task. Exp Brain Res 126:289–306

    Article  PubMed  CAS  Google Scholar 

  • Schultz W (2006) Behavioral theories and the neurophysiology of reward. Annu Rev Psychol 57:87–115

    Article  PubMed  Google Scholar 

  • Sergio LE, Kalaska JF (2003) Systematic changes in motor cortex cell activity with arm posture during directional isometric force generation. J Neurophysiol 89:212–228

    Article  PubMed  Google Scholar 

  • Shadmehr R, Mussa-Ivaldi FA (1994) Adaptive representation of dynamics during learning of a motor task. J Neurosci 14:3208–3224

    PubMed  CAS  Google Scholar 

  • Shadmehr R, Brandt J, Corkin S (1998) Time dependent motor memory processes in H.M. and other amnesic subjects. J Neurophysiol 80:1590–1597

    PubMed  CAS  Google Scholar 

  • Shimazu H, Maier MA, Cerri G, Kirkwood PA, Lemon RN (2004) Macaque ventral premotor cortex exerts powerful facilitation of motor cortex outputs to upper limb motoneurons. J Neurosci 24:1200–1211

    Article  PubMed  CAS  Google Scholar 

  • Sirigu A, Duhamel J-R, Cohen L, Pillon B, Dubois B, Agid Y (1996) The mental representation of hand movements after parietal cortex damage. Science 273:1564–1568

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Shadmehr R (2005) Intact ability to learn internal models of arm dynamics in Huntington’s disease but not cerebellar degeneration. J Neurophysiol 93:2809–2821

    Article  PubMed  Google Scholar 

  • Smith MA, Ghazizadeh A, Shadmehr R (2006) Interacting adaptive processes with different timescales underlie short-term motor learning. PLoS Biol 4:e179

    Article  PubMed  CAS  Google Scholar 

  • Takeichi N, Kaneko CR, Fuchs AF (2005) Discharge of monkey nucleus reticularis tegmenti pontis neurons changes during saccade adaptation. J Neurophysiol 94:1938–1951

    Article  PubMed  CAS  Google Scholar 

  • Takikawa Y, Kawagoe R, Itoh H, Nakahara H, Hikosaka O (2002) Modulation of saccadic eye movements by predicted reward outcome. Exp Brain Res 142:284–291

    Article  PubMed  Google Scholar 

  • Thiele A, Henning P, Kubischik M, Hoffmann KP (2002) Neural mechanisms of saccadic suppression. Science 295:2460–2462

    Article  PubMed  CAS  Google Scholar 

  • Thoroughman KA, Shadmehr R (2000) Learning of action through adaptive combination of motor primitives. Nature 407:742–747

    Article  PubMed  CAS  Google Scholar 

  • Thoroughman KA, Wang W, Tomov DN (2007) The influence of viscous loads on motor planning. J Neurophysiol 98:870–877

    Article  PubMed  Google Scholar 

  • Todorov E (2005) Stochastic optimal control and estimation methods adapted to the noise characteristics of the sensorimotor system. Neural Comput 17:1084–1108

    Article  PubMed  Google Scholar 

  • Todorov E, Jordan MI (2002) Optimal feedback control as a theory of motor coordination. Nat Neurosci 5:1226–1235

    Article  PubMed  CAS  Google Scholar 

  • Tranel D, Damasio AR, Damasio H, Brandt JP (1994) Sensorimotor skill learning in amnesia: additional evidence for the neural basis of nondeclarative memory. Learn Mem 1:165–179

    PubMed  CAS  Google Scholar 

  • Trommershauser J, Gepshtein S, Maloney LT, Landy MS, Banks MS (2005) Optimal compensation for changes in task-relevant movement variability. J Neurosci 25:7169–7178

    Article  PubMed  CAS  Google Scholar 

  • Tseng YW, Diedrichsen J, Krakauer JW, Shadmehr R, Bastian AJ (2007) Sensory prediction errors drive cerebellum-dependent adaptation of reaching. J Neurophysiol 98:54–62

    Article  PubMed  Google Scholar 

  • Tsien JZ, Huerta PT, Tonegawa S (1996) The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell 87:1327–1338

    Article  PubMed  CAS  Google Scholar 

  • Uno Y, Kawato M, Suzuki R (1989) Formation and control of optimal trajectory in human multijoint arm movement. Minimum torque-change model. Biol Cybern 61:89–101

    Article  PubMed  CAS  Google Scholar 

  • Van Gemmert AW, Teulings HL, Stelmach GE (2001) Parkinsonian patients reduce their stroke size with increased processing demands. Brain Cogn 47:504–512

    Article  PubMed  Google Scholar 

  • Vaziri S, Diedrichsen J, Shadmehr R (2006) Why does the brain predict sensory consequences of oculomotor commands? Optimal integration of the predicted and the actual sensory feedback. J Neurosci 26:4188–4197

    Article  PubMed  CAS  Google Scholar 

  • Vilis T, Hore J (1980) Central neural mechanisms contributing to cerebellar tremor produced by limb perturbations. J Neurophysiol 43:279–291

    PubMed  CAS  Google Scholar 

  • Wolpert DM, Ghahramani Z, Jordan MI (1995) An internal model for sensorimotor integration. Science 269:1880–1882

    Article  PubMed  CAS  Google Scholar 

  • Wolpert DM, Goodbody SJ, Husain M (1998a) Maintaining internal representations: the role of the human superior parietal lobe. Nature Neurosci 1:529–533

    Article  PubMed  CAS  Google Scholar 

  • Wolpert DM, Miall RC, Kawato M (1998b) Internal models in the cerebellum. Trends Cog Sci 2:338–347

    Article  Google Scholar 

  • Yamashita H (1993) Perceptual-motor learning in amnesic patients with medial temporal lobe lesions. Percept Mot Skills 77:1311–1314

    PubMed  CAS  Google Scholar 

  • Yang JF, Scholz JP (2005) Learning a throwing task is associated with differential changes in the use of motor abundance. Exp Brain Res 163:137–158

    Article  PubMed  Google Scholar 

  • Shallice T (1988) From neurobiology to mental structure. Cambridge University Press.

Download references

Acknowledgments

The work was supported by National Institutes of Health (NIH) grants K02-048099 and R01-052804 to JWK, R01-037422 to RS, and a grant from the Human Frontiers Science Foundation to RS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Shadmehr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shadmehr, R., Krakauer, J.W. A computational neuroanatomy for motor control. Exp Brain Res 185, 359–381 (2008). https://doi.org/10.1007/s00221-008-1280-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-008-1280-5

Keywords

Navigation