Skip to main content
Log in

Plasticity in the adult brain: lessons from the visual system

  • Review
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

While cortical circuits display maximal sensitivity to sensory experience during critical periods of early postnatal development, far less plasticity is present in the mature brain. Ocular dominance shift of visual cortical neurons in response to eye occlusion and recovery of visual functions from a period of sensory deprivation are two classical models in the study of critical period determinants in the visual cortex. Recent papers employing various pharmacological and environmental strategies have shown that it is possible to reinstate much greater levels of plasticity in the adult visual cortex than previously suspected. These studies point toward intracortical inhibition as a crucial determinant for critical period regulation in the visual system and have a great potential for therapeutic rehabilitation and recovery from injury in the adult brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Artola A, Singer W (1987) Long-term potentiation and NMDA receptors in rat visual cortex. Nature 330:649–652

    Article  PubMed  CAS  Google Scholar 

  • Barth M, Hirsch HV, Meinertzhagen IA, Heisenberg M (1997) Experience-dependent developmental plasticity in the optic lobe of Drosophila melanogaster. J Neurosci 17:1493–1504

    PubMed  CAS  Google Scholar 

  • Berardi N, Pizzorusso T, Maffei L (2000) Critical periods during sensory development. Curr Opin Neurobiol 10:138–145

    Article  PubMed  CAS  Google Scholar 

  • Berardi N, Pizzorusso T, Ratto GM, Maffei L (2003) Molecular basis of plasticity in the visual cortex. Trends Neurosci 26:369–378

    Article  PubMed  CAS  Google Scholar 

  • Berardi N, Pizzorusso T, DiCristo G, Harauzov A, Cancedda L, Medini P, Landi S, Maffei L (2005) Factors controlling adult visual cortical plasticity. In: 37th AGM EBBS, Dublin

  • Berardi N, Braschi C, Capsoni S, Cattaneo A, Maffei L (2007) Environmental enrichment delays the onset of memory deficits and reduces neuropathological hallmarks in a mouse model of Alzheimer-like neurodegeneration. J Alzheimers Dis 11:359–370

    PubMed  CAS  Google Scholar 

  • Bradbury EJ, Moon LD, Popat RJ, King VR, Bennett GS, Patel PN, Fawcett JW, McMahon SB (2002) Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416:636–640

    Article  PubMed  CAS  Google Scholar 

  • Cancedda L, Putignano E, Sale A, Viegi A, Berardi N, Maffei L (2004) Acceleration of visual system development by environmental enrichment. J Neurosci 24:4840–4848

    Article  PubMed  CAS  Google Scholar 

  • Castren E (2005) Is mood chemistry? Nat Rev Neurosci 6:241–246

    Article  PubMed  CAS  Google Scholar 

  • Ciucci F, Putignano E, Baroncelli L, Landi S, Berardi N, Maffei L (2007) Insulin-like growth factor 1 (IGF–1) mediates the effects of enriched environment (EE) on visual cortical development. PLoS ONE 2:e475

    Article  PubMed  CAS  Google Scholar 

  • Diamond MC (2001) Response of the brain to enrichment. An Acad Bras Cienc 73:211–220

    PubMed  CAS  Google Scholar 

  • Dityatev A, Schachner M (2003) Extracellular matrix molecules and synaptic plasticity. Nat Rev Neurosci 4:456–468

    Article  PubMed  CAS  Google Scholar 

  • Escorihuela RM, Fernandez-Teruel A, Tobena A, Vivas NM, Marmol F, Badia A, Dierssen M (1995) Early environmental stimulation produces long-lasting changes on beta-adrenoceptor transduction system. Neurobiol Learn Mem 64:49–57

    Article  PubMed  CAS  Google Scholar 

  • Fagiolini M, Hensch TK (2000) Inhibitory threshold for critical-period activation in primary visual cortex. Nature 404:183–186

    Article  PubMed  CAS  Google Scholar 

  • Fagiolini M, Pizzorusso T, Berardi N, Domenici L, Maffei L (1994) Functional postnatal development of the rat primary visual cortex and the role of visual experience: dark rearing and monocular deprivation. Vision Res 34:709–720

    Article  PubMed  CAS  Google Scholar 

  • Fischer A, Sananbenesi F, Wang X, Dobbin M, Tsai LH (2007) Recovery of learning and memory is associated with chromatin remodelling. Nature 447:178–182

    Article  PubMed  CAS  Google Scholar 

  • Frenkel MY, Bear MF (2004) How monocular deprivation shifts ocular dominance in visual cortex of young mice. Neuron 44:917–923

    Article  PubMed  CAS  Google Scholar 

  • Goodman CS, Shatz CJ (1993) Developmental mechanisms that generate precise patterns of neuronal connectivity. Cell 72(Suppl):77–98

    Article  PubMed  Google Scholar 

  • Greenough WT, Volkmar FR (1973) Pattern of dendritic branching in occipital cortex of rats reared in complex environments. Exp Neurol 40:491–504

    Article  PubMed  CAS  Google Scholar 

  • Hanover JL, Huang ZJ, Tonegawa S, Stryker MP (1999) Brain-derived neurotrophic factor overexpression induces precocious critical period in mouse visual cortex. J Neurosci 19:RC40

    PubMed  CAS  Google Scholar 

  • Hartig W, Brauer K, Bruckner G (1992) Wisteria floribunda agglutinin-labelled nets surround parvalbumin-containing neurons. Neuroreport 3:869–872

    Article  PubMed  CAS  Google Scholar 

  • Hartig W, Derouiche A, Welt K, Brauer K, Grosche J, Mader M, Reichenbach A, Bruckner G (1999) Cortical neurons immunoreactive for the potassium channel Kv3.1b subunit are predominantly surrounded by perineuronal nets presumed as a buffering system for cations. Brain Res 842:15–29

    Article  PubMed  CAS  Google Scholar 

  • He HY, Hodos W, Quinlan EM (2006) Visual deprivation reactivates rapid ocular dominance plasticity in adult visual cortex. J Neurosci 26:2951–2955

    Article  PubMed  CAS  Google Scholar 

  • He HY, Ray B, Dennis K, Quinlan EM (2007) Experience-dependent recovery of vision following chronic deprivation amblyopia. Nat Neurosci 10:1134–1136

    Article  PubMed  CAS  Google Scholar 

  • Hensch TK (2004) Critical period regulation. Annu Rev Neurosci 27:549–579

    Article  PubMed  CAS  Google Scholar 

  • Hensch TK (2005) Critical period plasticity in local cortical circuits. Nat Rev Neurosci 6:877–888

    Article  PubMed  CAS  Google Scholar 

  • Hensch TK, Fagiolini M, Mataga N, Stryker MP, Baekkeskov S, Kash SF (1998) Local GABA circuit control of experience-dependent plasticity in developing visual cortex. Science 282:1504–1508

    Article  PubMed  CAS  Google Scholar 

  • Hockfield S, Kalb RG, Zaremba S, Fryer H (1990) Expression of neural proteoglycans correlates with the acquisition of mature neuronal properties in the mammalian brain. Cold Spring Harb Symp Quant Biol 55:505–514

    PubMed  CAS  Google Scholar 

  • Holderbach R, Clark K, Moreau JL, Bischofberger J, Normann C (2007) Enhanced long-term synaptic depression in an animal model of depression. Biol Psychiatry 62:92–100

    Article  PubMed  Google Scholar 

  • Huang ZJ, Kirkwood A, Pizzorusso T, Porciatti V, Morales B, Bear MF, Maffei L, Tonegawa S (1999) BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 98:739–755

    Article  PubMed  CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1963) Shape and arrangement of columns in cat’s striate cortex. J Physiol 165:559–568

    PubMed  CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1970) The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J Physiol 206:419–436

    PubMed  CAS  Google Scholar 

  • Katz LC, Shatz CJ (1996) Synaptic activity and the construction of cortical circuits. Science 274:1133–1138

    Article  PubMed  CAS  Google Scholar 

  • Kiorpes L, Kiper DC, O’Keefe LP, Cavanaugh JR, Movshon JA (1998) Neuronal correlates of amblyopia in the visual cortex of macaque monkeys with experimental strabismus and anisometropia. J Neurosci 18:6411–6424

    PubMed  CAS  Google Scholar 

  • Kirkwood A, Bear MF (1994) Hebbian synapses in visual cortex. J Neurosci 14:1634–1645

    PubMed  CAS  Google Scholar 

  • Landi S, Cenni MC, Maffei L, Berardi N (2007) Environmental enrichment effects on development of retinal ganglion cell dendritic stratification require retinal BDNF. PLoS ONE 2:e346

    Article  PubMed  CAS  Google Scholar 

  • Lazarov O, Robinson J, Tang YP, Hairston IS, Korade-Mirnics Z, Lee VM, Hersh LB, Sapolsky RM, Mirnics K, Sisodia SS (2005) Environmental enrichment reduces Abeta levels and amyloid deposition in transgenic mice. Cell 120:701–713

    Article  PubMed  CAS  Google Scholar 

  • Liao DS, Krahe TE, Prusky GT, Medina AE, Ramoa AS (2004) Recovery of cortical binocularity and orientation selectivity after the critical period for ocular dominance plasticity. J Neurophysiol 92:2113–2121

    Article  PubMed  Google Scholar 

  • Majewska A, Sur M (2003) Motility of dendritic spines in visual cortex in vivo: changes during the critical period and effects of visual deprivation. Proc Natl Acad Sci U S A 100:16024–16029

    Article  PubMed  CAS  Google Scholar 

  • Mataga N, Nagai N, Hensch TK (2002) Permissive proteolytic activity for visual cortical plasticity. Proc Natl Acad Sci U S A 99:7717–7721

    Article  PubMed  CAS  Google Scholar 

  • Mataga N, Mizuguchi Y, Hensch TK (2004) Experience-dependent pruning of dendritic spines in visual cortex by tissue plasminogen activator. Neuron 44:1031–1041

    Article  PubMed  CAS  Google Scholar 

  • Maurer D, Lewis TL, Brent HP, Levin AV (1999) Rapid improvement in the acuity of infants after visual input. Science 286:108–110

    Article  PubMed  CAS  Google Scholar 

  • Maya Vetencourt JF, Sale A, Viegi A, Baroncelli L, De Pasquale R, O’Leary OF, Castren E, Maffei L (2008) The antidepressant fluoxetine restores plasticity in the adult visual cortex. Science 320:385–388

    Article  PubMed  CAS  Google Scholar 

  • McGee AW, Yang Y, Fischer QS, Daw NW, Strittmatter SM (2005) Experience-driven plasticity of visual cortex limited by myelin and Nogo receptor. Science 309:2222–2226

    Article  PubMed  CAS  Google Scholar 

  • Mellor J (2006) Dynamic nucleosomes and gene transcription. Trends Genet 22:320–329

    Article  PubMed  CAS  Google Scholar 

  • Naka F, Shiga T, Yaguchi M, Okado N (2002) An enriched environment increases noradrenaline concentration in the mouse brain. Brain Res 924:124–126

    Article  PubMed  CAS  Google Scholar 

  • Nestler EJ (1998) Antidepressant treatments in the 21st century. Biol Psychiatry 44:526–533

    Article  PubMed  CAS  Google Scholar 

  • Nithianantharajah J, Hannan AJ (2006) Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat Rev Neurosci 7:697–709

    Article  PubMed  CAS  Google Scholar 

  • Oray S, Majewska A, Sur M (2004) Dendritic spine dynamics are regulated by monocular deprivation and extracellular matrix degradation. Neuron 44:1021–1030

    Article  PubMed  CAS  Google Scholar 

  • Pizzorusso T, Medini P, Berardi N, Chierzi S, Fawcett JW, Maffei L (2002) Reactivation of ocular dominance plasticity in the adult visual cortex. Science 298:1248–1251

    Article  PubMed  CAS  Google Scholar 

  • Pizzorusso T, Medini P, Landi S, Baldini S, Berardi N, Maffei L (2006) Structural and functional recovery from early monocular deprivation in adult rats. Proc Natl Acad Sci U S A 103:8517–8522

    Article  PubMed  CAS  Google Scholar 

  • Polley DB, Kvasnak E, Frostig RD (2004) Naturalistic experience transforms sensory maps in the adult cortex of caged animals. Nature 429:67–71

    Article  PubMed  CAS  Google Scholar 

  • van Praag H, Kempermann G, Gage FH (2000) Neural consequences of environmental enrichment. Nat Rev Neurosci 1:191–198

    Article  PubMed  CAS  Google Scholar 

  • Prusky GT, Douglas RM (2003) Developmental plasticity of mouse visual acuity. Eur J Neurosci 17:167–173

    Article  PubMed  Google Scholar 

  • Prusky GT, West PW, Douglas RM (2000) Experience-dependent plasticity of visual acuity in rats. Eur J Neurosci 12:3781–3786

    Article  PubMed  CAS  Google Scholar 

  • Putignano E, Lonetti G, Cancedda L, Ratto G, Costa M, Maffei L, Pizzorusso T (2007) Developmental downregulation of histone posttranslational modifications regulates visual cortical plasticity. Neuron 53:747–759

    Article  PubMed  CAS  Google Scholar 

  • Rampon C, Tang YP, Goodhouse J, Shimizu E, Kyin M, Tsien JZ (2000) Enrichment induces structural changes and recovery from nonspatial memory deficits in CA1 NMDAR1-knockout mice. Nat Neurosci 3:238–244

    Article  PubMed  CAS  Google Scholar 

  • Rasmuson S, Olsson T, Henriksson BG, Kelly PA, Holmes MC, Seckl JR, Mohammed AH (1998) Environmental enrichment selectively increases 5-HT1A receptor mRNA expression and binding in the rat hippocampus. Brain Res Mol Brain Res 53:285–290

    Article  PubMed  CAS  Google Scholar 

  • Renner MJ, Rosenzweig MR (1987) The golden-mantled ground squirrel (Spermophilus lateralis) as a model for the effects of environmental enrichment in solitary animals. Dev Psychobiol 20:19–24

    Article  PubMed  CAS  Google Scholar 

  • Rosenzweig MR (1966) Environmental complexity, cerebral change, and behavior. Am Psychol 21:321–332

    Article  PubMed  CAS  Google Scholar 

  • Rosenzweig MR, Bennett EL (1996) Psychobiology of plasticity: effects of training and experience on brain and behavior. Behav Brain Res 78:57–65

    Article  PubMed  CAS  Google Scholar 

  • Rosenzweig MR, Krech D, Bennett EL, Diamond MC (1962) Effects of environmental complexity and training on brain chemistry and anatomy: a replication and extension. J Comp Physiol Psychol 55:429–437

    Article  PubMed  CAS  Google Scholar 

  • Rosenzweig MR, Bennett EL, Diamond MC (1967) Effects of differential environments on brain anatomy and brain chemistry. Proc Annu Meet Am Psychopathol Assoc 56:45–56

    PubMed  CAS  Google Scholar 

  • Saghatelyan AK, Dityatev A, Schmidt S, Schuster T, Bartsch U, Schachner M (2001) Reduced perisomatic inhibition, increased excitatory transmission, and impaired long-term potentiation in mice deficient for the extracellular matrix glycoprotein tenascin-R. Mol Cell Neurosci 17:226–240

    Article  PubMed  CAS  Google Scholar 

  • Sale A, Putignano E, Cancedda L, Landi S, Cirulli F, Berardi N, Maffei L (2004) Enriched environment and acceleration of visual system development. Neuropharmacology 47:649–660

    Article  PubMed  CAS  Google Scholar 

  • Sale A, Cenni MC, Ciucci F, Putignano E, Chierzi S, Maffei L (2007a) Maternal enrichment during pregnancy accelerates retinal development of the fetus. PLoS ONE 2:e1160

    Article  PubMed  Google Scholar 

  • Sale A, Maya Vetencourt JF, Medini P, Cenni MC, Baroncelli L, De Pasquale R, Maffei L (2007b) Environmental enrichment in adulthood promotes amblyopia recovery through a reduction of intracortical inhibition. Nat Neurosci 10:679–681

    Article  PubMed  CAS  Google Scholar 

  • Sawtell NB, Frenkel MY, Philpot BD, Nakazawa K, Tonegawa S, Bear MF (2003) NMDA receptor-dependent ocular dominance plasticity in adult visual cortex. Neuron 38:977–985

    Article  PubMed  CAS  Google Scholar 

  • Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5:146–156

    Article  PubMed  CAS  Google Scholar 

  • Soghomonian JJ, Martin DL (1998) Two isoforms of glutamate decarboxylase: why? Trends Pharmacol Sci 19:500–505

    Article  PubMed  CAS  Google Scholar 

  • Timney B (1983) The effects of early and late monocular deprivation on binocular depth perception in cats. Brain Res 283:235–243

    PubMed  CAS  Google Scholar 

  • Workman JL (2006) Nucleosome displacement in transcription. Genes Dev 20:2009–2017

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Spolidoro.

Additional information

M. Spolidoro and A. Sale have equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spolidoro, M., Sale, A., Berardi, N. et al. Plasticity in the adult brain: lessons from the visual system. Exp Brain Res 192, 335–341 (2009). https://doi.org/10.1007/s00221-008-1509-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-008-1509-3

Keywords

Navigation