Skip to main content
Log in

Neurons in the lateral intraparietal area create a priority map by the combination of disparate signals

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Primates search for objects in the visual field with eye movements. We recorded the activity of neurons in the lateral intraparietal area (LIP) in animals performing a visual search task in which they were free to move their eyes, and reported the results of the search with a hand movement. We distinguished three independent signals: (1) a visual signal describing the abrupt onset of a visual stimulus in the receptive field; (2) a saccadic signal predicting the monkey’s saccadic reaction time independently of the nature of the stimulus; (3) a cognitive signal distinguishing between the search target and a distractor independently of the direction of the impending saccade. The cognitive signal became significant on average 27 ms after the saccadic signal but before the saccade was made. The three signals summed in a manner discernable at the level of the single neuron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Assad JA, Maunsell JHR (1995) Neuronal correlates of inferred motion in primate posterior parietal cortex. Nature 373:518–521

    Article  PubMed  CAS  Google Scholar 

  • Avillac M, Ben Hamed S, Duhamel JR (2007) Multisensory integration in the ventral intraparietal area of the macaque monkey. J Neurosci 27:1922–1932

    Article  PubMed  CAS  Google Scholar 

  • Bair W, Cavanaugh JR, Smith MA, Movshon JA (2002) The timing of response onset and offset in macaque visual neurons. J Neurosci 22:3189–3205

    PubMed  CAS  Google Scholar 

  • Baizer JS, Ungerleider LG, Desimone R (1991) Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques. J Neurosci 11:168–190

    PubMed  CAS  Google Scholar 

  • Barash S, Bracewell RM, Fogassi L, Gnadt JW, Andersen RA (1991) Saccade-related activity in the lateral intraparietal areaI. Temporal properties. J Neurophysiol 66:1095–1108

    PubMed  CAS  Google Scholar 

  • Bisley JW, Goldberg ME (2003) Neuronal activity in the lateral intraparietal area and spatial attention. Science 299:81–86

    Article  PubMed  CAS  Google Scholar 

  • Bisley JW, Goldberg ME (2006) Neural correlates of attention and distractibility in the lateral intraparietal area. J Neurophysiol 95:1696–1717

    Article  PubMed  Google Scholar 

  • Bisley JW, Krishna BS, Goldberg ME (2004) A rapid and precise on-response in posterior parietal cortex. J Neurosci 24:1833–1838

    Article  PubMed  CAS  Google Scholar 

  • Bisley JW, Ipata AE, Krishna BS, Gee AL, Goldberg ME (2008) The lateral intraparietal area: a priority map in posterior parietal cortex. In: Jenkin M, Harris LR (eds) Cortical mechanisms of visions. Cambridge University Press, Cambridge, pp 5–30

    Google Scholar 

  • Blatt GJ, Andersen RA, Stoner GR (1990) Visual receptive field organization and cortico-cortical connections of the lateral intraparietal area (area LIP) in the macaque. J Comp Neurol 299:421–445

    Article  PubMed  CAS  Google Scholar 

  • Bruce CJ, Goldberg ME (1985) Primate frontal eye fields I. Single neurons discharging before saccades. J Neurophysiol 53:603–635

    PubMed  CAS  Google Scholar 

  • Cash S, Yuste R (1999) Linear summation of excitatory inputs by CA1 pyramidal neurons. Neuron 22:383–394

    Article  PubMed  CAS  Google Scholar 

  • Colby CL, Duhamel J-R, Goldberg ME (1996) Visual, presaccadic and cognitive activation of single neurons in monkey lateral intraparietal area. J Neurophysiol 76:2841–2852

    PubMed  CAS  Google Scholar 

  • Dickinson AR, Calton JL, Snyder LH (2003) Nonspatial saccade-specific activation in area LIP of monkey parietal cortex. J Neurophysiol 90:2460–2464

    Article  PubMed  CAS  Google Scholar 

  • Distler C, Boussaoud D, Desimone R, Ungerleider LG (1993) Cortical connections of inferior temporal area TEO in macaque monkeys. J Comp Neurol 334:125–150

    Article  PubMed  CAS  Google Scholar 

  • Duhamel J-R, Colby CL, Goldberg ME (1992) The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255:90–92

    Article  PubMed  CAS  Google Scholar 

  • Eskandar EN, Assad JA (1999) Dissociation of visual, motor and predictive signals in parietal cortex during visual guidance. Nat Neurosci 2:88–93

    Article  PubMed  CAS  Google Scholar 

  • Freedman DJ, Assad JA (2006) Experience-dependent representation of visual categories in parietal cortex. Nature 443:85–88

    Article  PubMed  CAS  Google Scholar 

  • Goldberg ME, Wurtz RH (1972) Activity of superior colliculus in behaving monkeys II. Effect of attention on neuronal responses. J Neurophysiol 35:560–574

    PubMed  CAS  Google Scholar 

  • Gottlieb J, Kusunoki M, Goldberg ME (1998) The representation of visual salience in monkey parietal cortex. Nature 391:481–484

    Article  PubMed  CAS  Google Scholar 

  • Haider B, Duque A, Hasenstaub AR, Yu Y, McCormick DA (2007) Enhancement of visual responsiveness by spontaneous local network activity in vivo. J Neurophysiol 97:4186–4202

    Article  PubMed  Google Scholar 

  • Hays AV, Richmond BJ, Optican LM (1982) A UNIX-based multiple process system for real-time data acquisition and control. WESCON Conf Proc 2:1–10

    Google Scholar 

  • Hikosaka O, Wurtz RH (1983) Visual and oculomotor functions of monkey substantia nigra pars reticulata III. Memory-contingent visual and saccade responses. J Neurophysiol 49:1268–1284

    PubMed  CAS  Google Scholar 

  • Ipata AE, Gee AL, Goldberg ME, Bisley JW (2006a) Activity in the lateral intraparietal area predicts the goal and latency of saccades in a free-viewing visual search task. J Neurosci 26:3656–3661

    Article  PubMed  CAS  Google Scholar 

  • Ipata AE, Gee AL, Gottlieb J, Bisley JW, Goldberg ME (2006b) LIP responses to a popout stimulus are reduced if it is overtly ignored. Nat Neurosci 9:1071–1076

    Article  PubMed  CAS  Google Scholar 

  • Jagadeesh B, Wheat HS, Ferster D (1993) Linearity of summation of synaptic potentials underlying direction selectivity in simple cells of the cat visual cortex. Science 262:1901–1904

    Article  PubMed  CAS  Google Scholar 

  • Kusunoki M, Goldberg ME (2003) The time course of perisaccadic receptive field shifts in the lateral intraparietal area of the monkey. J Neurophysiol 89:1519–1527

    Article  PubMed  Google Scholar 

  • Lewis JW, Van Essen DC (2000) Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey. J Comp Neurol 428:112–137

    Article  PubMed  CAS  Google Scholar 

  • McPeek RM, Keller EL (2002) Saccade target selection in the superior colliculus during a visual search task. J Neurophysiol 88:2019–2034

    PubMed  Google Scholar 

  • Metcalfe J (1993) Novelty monitoring, metacognition, and control in a composite holographic associative recall model: implications for Korsakoff amnesia. Psychol Rev 100:3–22

    Article  PubMed  CAS  Google Scholar 

  • Motter BC, Belky EJ (1998) The guidance of eye movements during active visual search. Vision Res 38:1805–1815

    Article  PubMed  CAS  Google Scholar 

  • Oristaglio J, Schneider DM, Balan PF, Gottlieb J (2006) Integration of visuospatial and effector information during symbolically cued limb movements in monkey lateral intraparietal area. J Neurosci 26:8310–8319

    Article  PubMed  CAS  Google Scholar 

  • Paton JJ, Belova MA, Morrison SE, Salzman CD (2006) The primate amygdala represents the positive and negative value of visual stimuli during learning. Nature 439:865–870

    Article  PubMed  CAS  Google Scholar 

  • Platt ML, Glimcher PW (1997) Responses of intraparietal neurons to saccadic targets and visual distractors. J Neurophysiol 78:1574–1589

    PubMed  CAS  Google Scholar 

  • Platt ML, Glimcher PW (1999) Neural correlates of decision variables in parietal cortex. Nature 400:233–238

    Article  PubMed  CAS  Google Scholar 

  • Powell KD, Goldberg ME (2000) Response of neurons in the lateral intraparietal area to a distractor flashed during the delay period of a memory-guided saccade. J Neurophysiol 84:301–310

    PubMed  CAS  Google Scholar 

  • Richmond BJ, Optican LM, Podell M, Spitzer H (1987) Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex I. Response characteristics. J Neurophysiol 57:132–146

    PubMed  CAS  Google Scholar 

  • Sato TR, Watanabe K, Thompson KG, Schall JD (2003) Effect of target-distractor similarity on FEF visual selection in the absence of the target. Exp Brain Res 151:356–363

    Article  PubMed  Google Scholar 

  • Schmolesky MT, Wang Y, Hanes DP, Thompson KG, Leutgeb S, Schall JD, Leventhal AG (1998) Signal timing across the macaque visual system. J Neurophysiol 79:3272–3278

    PubMed  CAS  Google Scholar 

  • Serences JT, Yantis S (2006) Selective visual attention and perceptual coherence. Trends Cogn Sci 10:38–45

    Article  PubMed  Google Scholar 

  • Sereno AB, Maunsell JH (1998) Shape selectivity in primate lateral intraparietal cortex. Nature 395:500–503

    Article  PubMed  CAS  Google Scholar 

  • Shadlen MN, Newsome WT (2001) Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J Neurophysiol 86:1916–1936

    PubMed  CAS  Google Scholar 

  • Shen K, Pare M (2007) Neuronal activity in superior colliculus signals both stimulus identity and saccade goals during visual conjunction search. J Vision 15:1–13

    CAS  Google Scholar 

  • Snyder LH, Batista AP, Andersen RA (1997) Coding of intention in the posterior parietal cortex. Nature 386:167–170

    Article  PubMed  CAS  Google Scholar 

  • Sugrue LP, Corrado GS, Newsome WT (2004) Matching behavior and the representation of value in the parietal cortex. Science 304:1782–1787

    Article  PubMed  CAS  Google Scholar 

  • Thomas NW, Pare M (2007) Temporal processing of saccade targets in parietal cortex area LIP during visual search. J Neurophysiol 97:942–947

    Article  PubMed  Google Scholar 

  • Thompson KG, Hanes DP, Bichot NP, Schall JD (1996) Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search. J Neurophysiol 76:4040–4055

    PubMed  CAS  Google Scholar 

  • Treisman AM, Gelade G (1980) A feature-integration theory of attention. Cognit Psychol 12:97–136

    Article  PubMed  CAS  Google Scholar 

  • Yang T, Shadlen MN (2007) Probabilistic reasoning by neurons. Nature 447:1075–1080

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Yana Pavlova for dedicated animal maintenance, to Drs. Mohammed Osman and Girma Asfaw for veterinary care, to Steve Dashnaw and Dr. Joy Hirsch for MR imaging, to Glen Duncan for electronic and computer support, to the members of the Mahoney Center for their trenchant comments on earlier drafts of this paper, and to Latoya Palmer for facilitating everything. Dr. Lance Optican of the Laboratory of Sensorimotor Research of the National Eye Institute wrote the Matlab functions which convert REX data files to Matlab structs. Dr. John McClurkin from the Laboratory of Sensorimotor Research helped us maintain REX, VEX, and MEX. This research was supported by grants from the National Eye Institute (1 R01 EY014978-01, and 1 R24 EY015634-01 to M.E.G.), the National Institute of Neurological, Communicative Diseases and Stroke (1 F31 NS058059-01 to A.L.G.) and the Keck and Dana Foundations; and from the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna E. Ipata.

Additional information

A.E. Ipata and A.L. Gee have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ipata, A.E., Gee, A.L., Bisley, J.W. et al. Neurons in the lateral intraparietal area create a priority map by the combination of disparate signals. Exp Brain Res 192, 479–488 (2009). https://doi.org/10.1007/s00221-008-1557-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-008-1557-8

Keywords

Navigation