Skip to main content
Log in

Hippocampal contribution to early and later stages of implicit motor sequence learning

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Implicit motor sequence learning refers to an important human ability to acquire new motor skills through the repeated performance of a motor sequence. This learning process is characterized by slow, incremental gains of motor performance. The present fMRI study was developed to better delineate the areas supporting these temporal dynamics of learning. By using the serial color matching paradigm, our study focused on the motor level of sequence learning and tracked the time course of learning-related neural changes. Imaging results showed a significant contribution of the left anterior hippocampus in an early sequence acquisition stage (first scanning session) as well as during a later stage with stabilized learning effects (second scanning session). Hippocampal activation significantly correlated with the behavioral learning process and was affected by a change of the motor sequence. These results suggest a strong involvement of the hippocampus in implicit motor sequence learning. On the other hand, a very extensive and bilateral neural network of parietal, temporal and frontal cortical areas (including SMA, pre-SMA) together with parts of the cerebellum and striatum were found to play a role during random visuo-motor task performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aizenstein HJ, Stenger VA, Cochran J, Clark K, Johnson M, Nebes RD et al (2004) Regional brain activation during concurrent implicit and explicit sequence learning. Cereb Cortex 14:199–208

    Article  PubMed  Google Scholar 

  • Anastasopoulou T, Harvey N (1999) Assessing sequential knowledge through performance measures: The influence of short-term sequential effects. Q J Exp Psychol A 52:423–448

    Article  Google Scholar 

  • Bar M (2007) The proactive brain: using analogies and associations to generate predictions. Trends Cogn Sci 11:280–289

    Article  PubMed  Google Scholar 

  • Bischoff-Grethe A, Goedert KM, Willingham DT, Grafton ST (2004) Neural substrates of response-based sequence learning using fMRI. J Cogn Neurosci 16:127–138

    Article  PubMed  Google Scholar 

  • Brasted PJ, Bussey TJ, Murray EA, Wise SP (2003) Role of the hippocampal system in associative learning beyond the spatial domain. Brain 126:1202–1223

    Article  PubMed  CAS  Google Scholar 

  • Cave CB, Squire LR (1992) Intact and long-lasting repetition priming in amnesia. J Exp Psychol Learn Mem Cogn 18:509–520

    Article  PubMed  CAS  Google Scholar 

  • Chun MM, Phelps EA (1999) Memory deficits for implicit contextual information in amnesic subjects with hippocampal damage. Nat Neurosci 2:844–847

    Article  PubMed  CAS  Google Scholar 

  • Colgin LL, Moser EI, Moser MB (2008) Understanding memory through hippocampal remapping. Trends Neurosci 31:469–477

    Article  PubMed  CAS  Google Scholar 

  • Curran T (1997) Higher-order associative learning in amnesia: evidence from the serial reaction time task. J Cogn Neurosci 9:522–533

    Article  Google Scholar 

  • Destrebecqz A, Cleeremans A (2001) Can sequence learning be implicit? New evidence with the process dissociation procedure. Psychon Bull Rev 8:343–350

    PubMed  CAS  Google Scholar 

  • Destrebecqz A, Peigneux P, Laureys S, Degueldre C, Del Fiore G, Aerts J et al (2005) The neural correlates of implicit and explicit sequence learning: interacting networks revealed by the process dissociation procedure. Learn Mem 12:480–490

    Article  PubMed  Google Scholar 

  • Doyon J, Bellec P, Amsel R, Penhune V, Monchi O, Carrier J et al (2009) Contributions of the basal ganglia and functionally related brain structures to motor learning. Behav Brain Res 199:61–75

    Article  PubMed  Google Scholar 

  • Fortin NJ, Agster KL, Eichenbaum HB (2002) Critical role of the hippocampus in memory for sequences of events. Nat Neurosci 5:458–462

    PubMed  CAS  Google Scholar 

  • Friston KJ, Penny WD, Glaser DE (2005) Conjunction revisited. Neuroimage 25:661–667

    Article  PubMed  Google Scholar 

  • Gheysen F, Gevers W, De Schutter E, Van Waelvelde H, Fias W (2009) Disentangling perceptual from motor implicit sequence learning with a serial color-matching task. Exp Brain Res 197:163–174

    Article  PubMed  Google Scholar 

  • Giovanello KS, Verfaellie M, Keane MM (2003) Disproportionate deficit in associative recognition relative to item recognition in global amnesia. Cogn Affect Behav Neurosci 3:186–194

    Article  PubMed  Google Scholar 

  • Grafton ST, Hazeltine E, Ivry R (1995) Functional mapping of sequence learning in normal humans. J Cogn Neurosci 7:497–510

    Article  Google Scholar 

  • Hazeltine E, Grafton ST, Ivry R (1997) Attention and stimulus characteristics determine the locus of motor-sequence encoding—a PET study. Brain 120:123–140

    Article  PubMed  Google Scholar 

  • Honda M, Deiber MP, Ibanez V, Pascual-Leone A, Zhuang P, Hallett M (1998) Dynamic cortical involvement in implicit and explicit motor sequence learning—a PET study. Brain 121:2159–2173

    Article  PubMed  Google Scholar 

  • Knowlton BJ, Mangels JA, Squire LR (1996) A neostriatal habit learning system in humans. Science 273:1399–1402

    Article  PubMed  CAS  Google Scholar 

  • Lieberman MD, Chang GY, Chiao J, Bookheimer SY, Knowlton BJ (2004) An event-related fMRI study of artificial grammar learning in a balanced chunk strength design. J Cogn Neurosci 16:427–438

    Article  PubMed  Google Scholar 

  • Loftus GR, Masson MEJ (1994) Using confidence-intervals in within-subject designs. Psychon Bull Rev 1:476–490

    Google Scholar 

  • Muller RA, Kleinhans N, Pierce K, Kemmotsu N, Courchesne E (2002) Functional MRI of motor sequence acquisition: effects of learning stage and performance. Cogn Brain Res 14:277–293

    Article  Google Scholar 

  • Nissen MJ, Bullemer P (1987) Attentional requirements of learning—evidence from performance-measures. Cogn Psychol 19:1–32

    Article  Google Scholar 

  • O’Keefe J (1999) Do hippocampal pyramidal cells signal non-spatial as well as spatial information? Hippocampus 9:352–364

    Article  PubMed  Google Scholar 

  • Orban P, Peigneux P, Lungu O, Albouy G, Breton E, Laberenne F et al (2010) The multifaceted nature of the relationship between performance and brain activity in motor sequence learning. Neuroimage 49:694–702

    Article  PubMed  Google Scholar 

  • Packard MG, Knowlton BJ (2002) Learning and memory functions of the basal ganglia. Annu Rev Neurosci 25:563–593

    Article  PubMed  CAS  Google Scholar 

  • Peigneux P, Maquet P, Meulemans T, Destrebecqz A, Laureys S, Degueldre C et al (2000) Striatum forever, despite sequence learning variability: a random effect analysis of PET data. Hum Brain Mapp 10:179–194

    Article  PubMed  CAS  Google Scholar 

  • Picard N, Strick PL (2001) Imaging the premotor areas. Curr Opin Neurobiol 11:663–672

    Article  PubMed  CAS  Google Scholar 

  • Rauch SL, Whalen PJ, Savage CR, Curran T, Kendrick A, Brown HD et al (1997) Striatal recruitment during an implicit sequence learning task as measured by functional magnetic resonance imaging. Hum Brain Mapp 5:124–132

    Article  PubMed  CAS  Google Scholar 

  • Reber PJ, Squire LR (1994) Parallel brain systems for learning with and without awareness. Learn Mem 1:217–229

    PubMed  CAS  Google Scholar 

  • Ryan JD, Althoff RR, Whitlow S, Cohen NJ (2000) Amnesia is a deficit in relational memory. Psychol Sci 11:454–461

    Article  PubMed  CAS  Google Scholar 

  • Sakai K, Hikosaka O, Miyauchi S, Sasaki Y, Fujimaki N, Pütz B (1999) Presupplementary motor area activation during sequence learning reflects visuo-motor association. J Neurosci 19:1–6

    Google Scholar 

  • Schendan HE, Searl MM, Melrose RJ, Stern CE (2003) An fMRI study of the role of the medial temporal lobe in implicit and explicit sequence learning. Neuron 37:1013–1025

    Article  PubMed  CAS  Google Scholar 

  • Schwarb H, Schumacher EH (2009) Neural evidence of a role for spatial response selection in the learning of spatial sequences. Brain Res 1247:114–125

    Article  PubMed  CAS  Google Scholar 

  • Seidler RD, Purushotham A, Kim SG, Ugurbil K, Willingham D, Ashe J (2002) Cerebellum activation associated with performance change but not motor learning. Science 296:2043–2046

    Article  PubMed  CAS  Google Scholar 

  • Seidler RD, Purushotham A, Kim SG, Ugurbil K, Willingham D, Ashe J (2005) Neural correlates of encoding and expression in implicit sequence learning. Exp Brain Res 165:114–124

    Article  PubMed  CAS  Google Scholar 

  • Shanks DR, Green RE, Kolodny J (1994) A critical examination of the evidence for nonconcious (implicit) learning. In: Umilta C, Moscovitch M (eds) Attention and performance XV: conscious and nonconscious information processing. MIT Press, Cambridge, pp 837–860

    Google Scholar 

  • Squire LR (2009) Memory and brain systems: 1969–2009. J Neurosci 29:12711–12716

    Article  PubMed  CAS  Google Scholar 

  • Squire LR, Stark CEL, Clark RE (2004) The medial temporal lobe. Annu Rev Neurosci 27:279–306

    Article  PubMed  CAS  Google Scholar 

  • Stadler MA, Frensch PA (eds) (1998) Handbook of implicit learning. Sage, Thousand Oaks

    Google Scholar 

  • Stevens M, Lammertyn J, Verbruggen F, Vandierendonck A (2006) Tscope: a C library for programming cognitive experiments on the MS Windows platform. Behav Res Methods 38:280–286

    PubMed  Google Scholar 

  • Takashima A, Nieuwenhuis ILC, Jensen O, Talamini LM, Rijpkema M, Fernandez G (2009) Shift from hippocampal to neocortical centered retrieval network with consolidation. J Neurosci 29:10087–10093

    Article  PubMed  CAS  Google Scholar 

  • Thomas KM, Hunt RH, Vizueta N, Sommer T, Durston S, Yang YH et al (2004) Evidence of developmental differences in implicit sequence learning: an fMRI study of children and adults. J Cogn Neurosci 16:1339–1351

    Article  PubMed  Google Scholar 

  • Toni I, Krams M, Turner R, Passingham RE (1998) The time course of changes during motor sequence learning: a whole-brain fMRI study. Neuroimage 8:50–61

    Article  PubMed  CAS  Google Scholar 

  • Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N et al (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273–289

    Article  PubMed  CAS  Google Scholar 

  • van der Graaf FHCE, de Jong BM, Maguire RP, Meiners LC, Leenders KL (2004) Cerebral activation related to skills practice in a double serial reaction time task: striatal involvement in random-order sequence learning. Cogn Brain Res 20:120–131

    Article  Google Scholar 

  • Van Opstal F, Verguts T, Orban GA, Fias W (2008) A hippocampal—parietal network for learning an ordered sequence. Neuroimage 40:333–341

    Article  PubMed  Google Scholar 

  • Van Opstal F, Fias W, Peigneux P, Verguts T (2009) The neural representation of extensively trained ordered sequences. Neuroimage 47:367–375

    Article  PubMed  Google Scholar 

  • Vaquero JMM, Jimenez L, Lupianez J (2006) The problem of reversals in assessing implicit sequence learning with serial reaction time tasks. Exp Brain Res 175:97–109

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grant P6/29 from Interuniversitary Attraction Poles program of the Belgian federal government. The first author was supported by a grant from the Research Council of Ghent University. The second author is a Postdoctoral fellow of the Research Foundation—Flanders (FWO—Vlaanderen). We wish to thank Seppe Santens and Michael Stevens for their assistance in programming the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Freja Gheysen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gheysen, F., Van Opstal, F., Roggeman, C. et al. Hippocampal contribution to early and later stages of implicit motor sequence learning. Exp Brain Res 202, 795–807 (2010). https://doi.org/10.1007/s00221-010-2186-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-010-2186-6

Keywords

Navigation