Skip to main content
Log in

Saccade adaptation as a model of learning in voluntary movements

  • Review
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Motor learning ensures the accuracy of our daily movements. However, we know relatively little about its mechanisms, particularly for voluntary movements. Saccadic eye movements serve to bring the image of a visual target precisely onto the fovea. Their accuracy is maintained not by on-line sensory feedback but by a learning mechanism, called saccade adaptation. Recent studies on saccade adaptation have provided valuable additions to our knowledge of motor learning. This review summarizes what we know about the characteristics and neural mechanisms of saccade adaptation, emphasizing recent findings and new ideas. Long-term adaptation, distinct from its short-term counterpart, seems to be present in the saccadic system. Accumulating evidence indicates the involvement of the oculomotor cerebellar vermis as a learning site. The superior colliculus is now suggested not only to generate saccade commands but also to issue driving signals for motor learning. These and other significant contributions have advanced our understanding of saccade adaptation and motor learning in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abel LA, Schmidt D, Dell’Osso LF, Daroff RB (1978) Saccadic system plasticity in humans. Ann Neurol 4:313–318

    PubMed  Google Scholar 

  • Albano JE (1996) Adaptive changes in saccade amplitude: oculocentric or orbitocentric mapping? Vis Res 36:2087–2098

    PubMed  Google Scholar 

  • Albus JS (1971) A theory of cerebellar function. Math Biosci 10:25–61

    Google Scholar 

  • Bahcall DO, Kowler E (2000) The control of saccadic adaptation: implications for the scanning of natural visual scenes. Vis Res 40:2779–2796

    PubMed  Google Scholar 

  • Barash S, Melikyan A, Sivakov A, Zhang M, Glickstein M, Thier P (1999) Saccadic dysmetria and adaptation after lesions of the cerebellar cortex. J Neurosci 19:10931–10939

    PubMed  Google Scholar 

  • Becker W (1989) Metrics. In: Wurtz B, Goldberg M (eds) The neurobiology of saccadic eye movements. Elsevier, Amsterdam, pp 13–67

    Google Scholar 

  • Boyden ES, Raymond JL (2003) Active reversal of motor memories reveals rules governing memory encoding. Neuron 39:1031–1042

    PubMed  Google Scholar 

  • Brodal P (1980) The projection from the nucleus reticularis tegmenti pontis to the cerebellum in the rhesus monkey. Exp Brain Res 38:29–36

    PubMed  Google Scholar 

  • Carey MR, Medina JF, Lisberger SG (2005) Instructive signals for motor learning from visual cortical area MT. Nat Neurosci 8:813–819

    PubMed  Google Scholar 

  • Catz N, Dicke PW, Thier P (2005) Cerebellar complex spike firing is suitable to induce as well as to stabilize motor learning. Curr Biol 15:2179–2189

    PubMed  Google Scholar 

  • Catz N, Dicke PW, Thier P (2008) Cerebellar-dependent motor learning is based on pruning a Purkinje cell population response. Proc Natl Acad Sci U S A 105:7309–7914

    PubMed  Google Scholar 

  • Cecala AL, Freedman EG (2008) Amplitude changes in response to target displacements during human eye-head movements. Vis Res 48:149–166

    PubMed  Google Scholar 

  • Cecala AL, Freedman EG (2009) Head-unrestrained gaze adaptation in the rhesus macaque. J Neurophysiol 101:164–183

    PubMed  Google Scholar 

  • Chen-Harris H, Joiner WM, Ethier V, Zee DS, Shadmehr R (2008) Adaptive control of saccades via internal feedback. J Neurosci 28:2804–2813

    PubMed  Google Scholar 

  • Crandall WF, Keller EL (1985) Visual and oculomotor signals in nucleus reticularis tegmenti pontis in alert monkey. J Neurophysiol 54:1326–1345

    PubMed  Google Scholar 

  • Dean P, Mayhew JEW, Langdon P (1994) Learning and maintaining saccadic accuracy: a model of brainstem-cerebellar interactions. J Cogn Neurosci 6:117–138

    Google Scholar 

  • Deubel H (1987) Adaptivity of gain and direction in oblique saccades. In: O’Regan J, Levy-Schoen A (eds) Eye movements: from physiology to cognition. Elsevier, Amsterdam, pp 181–191

    Google Scholar 

  • Deubel H (1989) Sensory and motor aspects of saccade control. Eur Arch Psychiatry Neurol Sci 239:17–22

    PubMed  Google Scholar 

  • Deubel H (1991) Adaptive control of saccade metrics. In: Obrecht G, Stark L (eds) Presbyopia research. Plenum Press, New York, pp 93–100

    Google Scholar 

  • Deubel H, Wolf W, Hauske G (1986) Adaptive gain control of saccadic eye movements. Hum Neurobiol 5:245–253

    PubMed  Google Scholar 

  • Ditterich J, Eggert T, Straube A (1999) Does visual background information influence saccadic adaptation? In: Becher W, Deubel H, Mergner T (eds) Current oculomotor research: physiological and psychological aspects. Plenum Press, New York, pp 71–80

    Google Scholar 

  • Ditterich J, Eggert T, Straube A (2000) The role of the attention focus in the visual information processing underlying saccadic adaptation. Vis Res 40:1125–1134

    PubMed  Google Scholar 

  • Edelman JA, Goldberg ME (2002) Effect of short-term saccadic adaptation on saccades evoked by electrical stimulation in the primate superior colliculus. J Neurophysiol 87:1915–1923

    PubMed  Google Scholar 

  • Erkelens CJ, Hulleman J (1993) Selective adaptation of internally triggered saccades made to visual targets. Exp Brain Res 93:157–164

    PubMed  Google Scholar 

  • Ethier V, Zee DS, Shadmehr R (2008) Changes in control of saccades during gain adaptation. J Neurosci 28:13929–13937

    PubMed  Google Scholar 

  • Fitzgibbon E, Goldberg M, Segraves M (1986) Short term adaptation in the monkey. In: Keller EL, Zee DS (eds) Adaptive processes in visual and oculomotor systems. Pergamon Press, Oxford, pp 329–333

    Google Scholar 

  • Frankfurter A, Weber JT, Royce GJ, Strominger NL, Harting JK (1976) An autoradiographic analysis of the tecto-olivary projection in primates. Brain Res 118:245–257

    PubMed  Google Scholar 

  • Frens MA, van Opstal AJ (1994) Transfer of short-term adaptation in human saccadic eye movements. Exp Brain Res 100:293–306

    PubMed  Google Scholar 

  • Frens M, van Opstal A (1997) Monkey superior colliculus activity during short-term saccadic adaptation. Brain Res Bull 43:473–483

    PubMed  Google Scholar 

  • Fuchs AF, Kaneko CR, Scudder CA (1985) Brainstem control of saccadic eye movements. Annu Rev Neurosci 8:307–337

    PubMed  Google Scholar 

  • Fuchs AF, Robinson FR, Straube A (1993) Role of the caudal fastigial nucleus in saccade generation. I. Neuronal discharge pattern. J Neurophysiol 70:1723–1740

    PubMed  Google Scholar 

  • Fuchs AF, Reiner D, Pong M (1996) Transfer of gain changes from targeting to other types of saccade in the monkey: constraints on possible sites of saccadic gain adaptation. J Neurophysiol 76:2522–2535

    PubMed  Google Scholar 

  • Fujita M (2005) Feed-forward associative learning for volitional movement control. Neurosci Res 52:153–165

    PubMed  Google Scholar 

  • Fujita M, Amagai A, Minakawa F, Aoki M (2002) Selective and delay adaptation of human saccades. Brain Res Cogn Brain Res 13:41–52

    PubMed  Google Scholar 

  • Gonzalo-Ruiz A, Leichnetz GR (1990) Afferents of the caudal fastigial nucleus in a new world monkey (Cebus apella). Exp Brain Res 80:600–608

    PubMed  Google Scholar 

  • Harting JK (1977) Descending pathways from the superior collicullus: an autoradiographic analysis in the rhesus monkey (Macaca mulatta). J Comp Neurol 173:583–612

    PubMed  Google Scholar 

  • Henson DB (1978) Corrective saccades—effects of altering visual feedback. Vis Res 18:63–67

    PubMed  Google Scholar 

  • Hopp JJ, Fuchs AF (2004) The characteristics and neuronal substrate of saccadic eye movement plasticity. Prog Neurobiol 72:27–53

    PubMed  Google Scholar 

  • Inaba N, Iwamoto Y, Yoshida K (2003) Changes in cerebellar fastigial burst activity related to saccadic gain adaptation in the monkey. Neurosci Res 46:359–368

    PubMed  Google Scholar 

  • Kaku Y, Yoshida K, Iwamoto Y (2009) Learning signals from the superior colliculus for adaptation of saccadic eye movements in the monkey. J Neurosci 29:5266–5275

    PubMed  Google Scholar 

  • Kawato M (1996) Learning internal models of the motor apparatus. In: Bloedel JR, Ebner TJ, Wise SP (eds) The acquisition of motor behaviors in vertebrates. MIT Press, Cambridge, MA, pp 409–430

    Google Scholar 

  • Kleine JF, Guan Y, Büttner U (2003) Saccade-related neurons in the primate fastigial nucleus: what do they encode? J Neurophysiol 90:3137–3154

    PubMed  Google Scholar 

  • Kojima Y, Iwamoto Y, Yoshida K (2004) Memory of learning facilitates saccadic adaptation in the monkey. J Neurosci 25:7531–7539

    Google Scholar 

  • Kojima Y, Iwamoto Y, Yoshida K (2005) Effect of saccadic amplitude adaptation on subsequent adaptation of saccades in different directions. Neurosci Res 53:404–412

    PubMed  Google Scholar 

  • Kojima Y, Yoshida K, Iwamoto Y (2007) Microstimulation of the midbrain tegmentum creates learning signals for saccade adaptation. J Neurosci 27:3759–3767

    PubMed  Google Scholar 

  • Kojima Y, Iwamoto Y, Robinson FR, Noto CT, Yoshida K (2008) Premotor inhibitory neurons carry signals related to saccade adaptation in the monkey. J Neurophysiol 99:220–230

    PubMed  Google Scholar 

  • Kojima Y, Soetedjo R, Fuchs AF (2010) Changes in simple spike activity of some Purkinje cells in the oculomotor vermis during saccade adaptation are appropriate to participate in motor learning. J Neurosci 30:3715–3727

    PubMed  Google Scholar 

  • Kommerell G, Olivier D, Theopold H (1976) Adaptive programming of phasic and tonic components in saccadic eye movements. Investigations of patients with abducens palsy. Invest Ophthalmol 15:657–660

    PubMed  Google Scholar 

  • Kröller J, Pélisson D, Prablanc C (1996) On the short-term adaptation of eye saccades and its transfer to head movements. Exp Brain Res 111:477–482

    PubMed  Google Scholar 

  • Kuki Y, Hirata Y, Blazquez PM, Heiney SA, Highstein SM (2004) Memory retention of vestibuloocular reflex motor learning in squirrel monkeys. Neuroreport 29:1007–1011

    Google Scholar 

  • Kyuhou S-I, Matsuzaki R (1991) Topographical organization of the tectoolivo-cerebellar projection in the cat. Neuroscience 41:227–241

    PubMed  Google Scholar 

  • Leigh RJ, Zee DS (2006) A survey of eye movements: characteristics and teleology. In: The neurology of eye movements. Oxford University Press, New York, pp 3–19

  • Lewis RF, Zee DS, Gaymard BM, Guthrie BL (1994) Extraocular muscle proprioception functions in the control of ocular alignment and eye movement conjugacy. J Neurophysiol 71:1028–1031

    Google Scholar 

  • Lewis RF, Zee DS, Hayman MR, Tamargo RJ (2001) Oculomotor function in the rhesus monkey after deafferentation of the extraocular muscles. Exp Brain Res 141:349–358

    PubMed  Google Scholar 

  • Li J, Smith SS, McElligott JG (1995) Cerebellar nitric oxide is necessary for vestibulo-ocular reflex adaptation, a sensorimotor model of learning. J Neurophysiol 74:489–494

    PubMed  Google Scholar 

  • Marr D (1969) A theory of cerebellar cortex. J Physiol (London) 202:437–470

    Google Scholar 

  • Mauk MD, Steinmetz JE, Thompson RF (1986) Classical conditioning using stimulation of the inferior olive as the unconditioned stimulus. Proc Natl Acad Sci U S A 83:5349–5353

    PubMed  Google Scholar 

  • Mays LE, Sparks DL (1980) Dissociation of visual and saccade-related responses in superior colliculus neurons. J Neurophysiol 43:207–232

    PubMed  Google Scholar 

  • McLaughlin SC (1967) Parametric adjustment in saccadic eye movements. Percept Psychophys 2:359–362

    Google Scholar 

  • Melis BJ, van Gisbergen JA (1996) Short-term adaptation of electrically induced saccades in monkey superior colliculus. J Neurophysiol 76:1744–1758

    PubMed  Google Scholar 

  • Miller JM, Anstis T, Templeton WB (1981) Saccadic plasticity: parametric adaptive control by retinal feedback. J Exp Psychol Hum Percept Perform 7:356–366

    PubMed  Google Scholar 

  • Miura M, Iwamoto Y, Yoshida K (2007) Long-term facilitation of saccade adaptation by repeated induction. Soc Neurosci Abstr 719.14

  • Moschovakis AK, Scudder CA, Highstein SM (1996) The microscopic anatomy and physiology of the mammalian saccadic system. Prog Neurobiol 50:133–254

    PubMed  Google Scholar 

  • Noda H, Sugita S, Ikeda Y (1990) Afferent and efferent connections of the oculomotor region of the fastigial nucleus in the macaque monkey. J Comp Neurol 302:330–348

    PubMed  Google Scholar 

  • Noto CT, Robinson FR (2001) Visual error is the stimulus for saccade gain adaptation. Brain Res Cogn Brain Res 12:301–305

    PubMed  Google Scholar 

  • Noto CT, Watanabe S, Fuchs AF (1999) Characteristics of simian adaptation fields produced by behavioral changes in saccade size and direction. J Neurophysiol 81:2798–2813

    PubMed  Google Scholar 

  • Ohtsuka K, Noda H (1991) Saccadic burst neurons in the oculomotor region of the fastigial nucleus of macaque monkeys. J Neurophysiol 65:1422–1434

    PubMed  Google Scholar 

  • Ohtsuka K, Noda H (1995) Discharge properties of Purkinje cells in the oculomotor vermis during visually guided saccades in the macaque monkey. J Neurophysiol 74:1828–1840

    PubMed  Google Scholar 

  • Optican LM, Robinson DA (1980) Cerebellar-dependent adaptive control of primate saccadic system. J Neurophysiol 44:1058–1076

    PubMed  Google Scholar 

  • Panouillères M, Weiss T, Urquizar C, Salemme R, Munoz DP, Pélisson D (2009) Behavioral evidence of separate adaptation mechanisms controlling saccade amplitude lengthening and shortening. J Neurophysiol 101:1550–1559

    PubMed  Google Scholar 

  • Phillips JO, Fuchs AF, Ling L, Iwamoto Y, Votaw S (1997) Gain adaptation of eye and head movement components of simian gaze shifts. J Neurophysiol 78:2817–2821

    PubMed  Google Scholar 

  • Robinson FR, Fuchs AF (2001) The role of the cerebellum in voluntary eye movements. Annu Rev Neurosci 24:981–1004

    PubMed  Google Scholar 

  • Robinson FR, Noto CT (2005) Roll of the cerebellar oculomotor vermis in saccade adaptation. Soc Neurosci Abstr 986.4

    Google Scholar 

  • Robinson FR, Straube A, Fuchs AF (1993) Role of the caudal fastigial nucleus in saccade generation. II. Effects of muscimol inactivation. J Neurophysiol 70:1741–1758

    PubMed  Google Scholar 

  • Robinson FR, Fuchs AF, Noto CT (2002) Cerebellar influences on saccade plasticity. Ann N Y Acad Sci 956:155–163

    PubMed  Google Scholar 

  • Robinson FR, Noto CT, Bevans SE (2003) Effect of visual error size on saccade adaptation in monkey. J Neurophysiol 90:1235–1244

    PubMed  Google Scholar 

  • Robinson FR, Soetedjo R, Noto CT (2006) Distinct short-term and long-term adaptation to reduce saccade size in monkey. J Neurophysiol 96:1030–1041

    PubMed  Google Scholar 

  • Schweighofer N, Arbib MA, Dominey PF (1996) A model of the cerebellum in adaptive control of saccadic gain. I. The model and its biological substrate. Biol Cybern 75:19–28

    PubMed  Google Scholar 

  • Scudder CA, McGee DM (2000) Connections of monkey saccade-related fastigial nucleus neurons revealed by anatomical and physiological methods. Soc Neurosci Abstr 971.26

  • Scudder CA, McGee DM (2003) Adaptive modification of saccade size produces correlated changes in the discharges of fastigial nucleus neurons. J Neurophysiol 90:1011–1026

    PubMed  Google Scholar 

  • Scudder CA, Batourina EY, Tunder GS (1998) Comparison of two methods of producing adaptation of saccade size and implications for the site of plasticity. J Neurophysiol 79:704–715

    PubMed  Google Scholar 

  • Scudder CA, Kaneko CS, Fuchs AF (2002) The brainstem burst generator for saccadic eye movements: a modern synthesis. Exp Brain Res 142:439–462

    PubMed  Google Scholar 

  • Semmlow JL, Gauthier GM, Vercher JL (1987) Short term adaptive modification of saccade amplitude. In: O’Regan J, Levy-Schoen A (eds) Eye movements: from physiology to cognition. Elsevier, Amsterdam, pp 191–200

    Google Scholar 

  • Shafer JL, Noto CT, Fuchs AF (2000) Temporal characteristics of error signals driving saccadic gain adaptation in the macaque monkey. J Neurophysiol 84:88–95

    PubMed  Google Scholar 

  • Shutoh F, Ohki M, Kitazawa H, Itohara S, Nagao S (2006) Memory trace of motor learning shifts transsynaptically from cerebellar cortex to nuclei for consolidation. Neuroscience 12:767–777

    Google Scholar 

  • Snow R, Hore J, Vilis T (1985) Adaptation of saccadic and vestibulo-ocular systems after extraocular muscle tenectomy. Invest Ophthalmol Vis Sci 26:924–931

    PubMed  Google Scholar 

  • Soetedjo R, Fuchs AF (2006) Complex spike activity of Purkinje cells in the oculomotor vermis during behavioral adaptation of monkey saccades. J Neurosci 26:7741–7755

    PubMed  Google Scholar 

  • Soetedjo R, Kojima Y, Fuchs AF (2008) Complex spike activity in the oculomotor vermis of the cerebellum: a vectorial error signal for saccade motor learning? J Neurophysiol 100:1949–1966

    PubMed  Google Scholar 

  • Soetedjo R, Kojima Y, Fuchs AF (2009) Subthreshold activation of the superior colliculus drives saccade motor learning. J Neurosci 29:15213–15222

    PubMed  Google Scholar 

  • Sparks DL, Hartwich-Young R (1989) The deep layers of the superior SC. In: Wurtz RH, Goldberg ME (eds) The neurobiology of saccadic eye movements. Elsevier, Amsterdam, pp 213–255

    Google Scholar 

  • Straube A, Deubel H, Spuler A, Büttner U (1995) Differential effect of a bilateral deep cerebellar nuclei lesion on externally and internally triggered saccades in humans. Neuro-Ophthalmology 15:67–74

    Google Scholar 

  • Straube A, Fuchs AF, Usher S, Robinson FR (1997) Characteristics of saccadic gain adaptation in rhesus macaques. J Neurophysiol 77:874–895

    PubMed  Google Scholar 

  • Takagi M, Zee DS, Tamargo RJ (1998) Effects of lesions of the oculomotor vermis on eye movements in primate: saccades. J Neurophysiol 80:1911–1931

    PubMed  Google Scholar 

  • Takeichi N, Kaneko CR, Fuchs AF (2005) Discharge of monkey nucleus reticularis tegmenti pontis neurons changes during saccade adaptation. J Neurophysiol 94:1938–1951

    PubMed  Google Scholar 

  • Takeichi N, Kaneko CR, Fuchs AF (2007) Activity changes in monkey superior colliculus during saccade adaptation. J Neurophysiol 97:4096–4107

    PubMed  Google Scholar 

  • Thielert CD, Thier P (1993) Patterns of projections from the pontine nuclei and the nucleus reticularis tegmenti pontis to the posterior vermis in the rhesus monkey: a study using retrograde tracers. J Comp Neurol 337:113–126

    PubMed  Google Scholar 

  • Thier P, Dicke PW, Haas R, Barash S (2000) Encoding of movement time by populations of cerebellar Purkinje cells. Nature 405:72–76

    PubMed  Google Scholar 

  • Tian J, Ethier V, Shadmehr R, Fujita M, Zee DS (2009) Some perspectives on saccade adaptation. Ann N Y Acad Sci 1164:166–172

    PubMed  Google Scholar 

  • Tseng YW, Diedrichsen J, Krakauer JW, Shadmehr R, Bastian AJ (2007) Sensory prediction errors drive cerebellum-dependent adaptation of reaching. J Neurophysiol 98:54–62

    PubMed  Google Scholar 

  • Waespe W, Müller-Meisser E (1996) Directional reversal of saccadic dysmetria and gain adaptivity in a patient with a superior cerebellar artery infarction. Neuro-Ophthalmology 16:65–74

    Google Scholar 

  • Wallman J, Fuchs AF (1998) Saccadic gain modification: visual error drives motor adaptation. J Neurophysiol 80:2405–2416

    PubMed  Google Scholar 

  • Watanabe S, Noto CT, Fuchs AF (2000) Flexibility of saccade adaptation in the monkey: different gain states for saccades in the same direction. Exp Brain Res 130:169–176

    PubMed  Google Scholar 

  • Yamada J, Noda H (1987) Afferent and efferent connections of the oculomotor cerebellar vermis in the macaque monkey. J Comp Neurol 265:224–241

    PubMed  Google Scholar 

  • Zee DS, Yee RD, Cogan DG, Robinson DA, Engel WK (1976) Ocular motor abnormalities in hereditary cerebellar ataxia. Brain 99:207–234

    PubMed  Google Scholar 

  • Zhou W, Weldon P, Tang B, King WM (2003) Rapid motor learning in the translational vestibulo-ocular reflex. J Neurosci 15:4288–4298

    Google Scholar 

Download references

Acknowledgments

We thank Masahiko Fujita for his comments on the earlier version of the manuscript and two anonymous reviewers for their constructive criticisms. We also thank Kozo Kobayashi for building laboratory facilities and the staff at the Corporation for Production and Research of Laboratory Primates for their help in surgery and veterinary care of our monkeys. We are grateful to Flaminia Miyamasu for her grammatical revision of the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiki Iwamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwamoto, Y., Kaku, Y. Saccade adaptation as a model of learning in voluntary movements. Exp Brain Res 204, 145–162 (2010). https://doi.org/10.1007/s00221-010-2314-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-010-2314-3

Keywords

Navigation