Skip to main content
Log in

Functional reorganization of upper-body movement after spinal cord injury

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Survivors of spinal cord injury need to reorganize their residual body movements for interacting with assistive devices and performing activities that used to be easy and natural. To investigate movement reorganization, we asked subjects with high-level spinal cord injury (SCI) and unimpaired subjects to control a cursor on a screen by performing upper-body motions. While this task would be normally accomplished by operating a computer mouse, here shoulder motions were mapped into the cursor position. Both the control and the SCI subjects were rapidly able to reorganize their movements and to successfully control the cursor. The majority of the subjects in both groups were successful in reducing the movements that were not effective at producing cursor motions. This is inconsistent with the hypothesis that the control system is merely concerned with the accurate acquisition of the targets and is unconcerned with motions that are not relevant to this goal. In contrast, our findings suggest that subjects can learn to reorganize coordination so as to increase the correspondence between the subspace of their upper-body motions with the plane in which the controlled cursor moves. This is effectively equivalent to constructing an inverse internal model of the map from body motions to cursor motions, established by the experiment. These results are relevant to the development of interfaces for assistive devices that optimize the use of residual voluntary control and enhance the learning process in disabled users, searching for an easily learnable map between their body motor space and control space of the device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baillieul J (1985) Kinematic programming alternatives for redundant manipulators. In: Proceedings of the IEEE international conference on robotics and automation, pp 722–728

  • Baker DR, Wampler CW (1988) On the inverse kinematics of redundant manipulators. Int J Rob Res 7:3–21

    Article  Google Scholar 

  • Bernstein N (1967) The coordination and regulation of movement. Pegammon Press, Oxford

    Google Scholar 

  • Birbaumer N, Ramos Murguialday A et al (2009) Neurofeedback and brain-computer interface clinical applications. Int Rev Neurobiol 86:107–117

    Article  PubMed  Google Scholar 

  • Blesch A, Tuszynski MH (2002) Spontaneous and neurotrophin-induced axonal plasticity after spinal cord injury. Prog Brain Res 137:415–423

    Article  CAS  PubMed  Google Scholar 

  • Blesch A, Tuszynski MH (2009) Spinal cord injury: plasticity, regeneration and the challenge of translational drug development. Trends Neurosci 32(1):41–47

    Article  CAS  PubMed  Google Scholar 

  • Bregman BS, Diener PS et al (1997) Intervention strategies to enhance anatomical plasticity and recovery of function after spinal cord injury. Adv Neurol 72:257–275

    CAS  PubMed  Google Scholar 

  • Bryden AM, Memberg WD et al (2000) Electrically stimulated elbow extension in persons with C5/C6 tetraplegia: a functional and physiological evaluation. Arch Phys Med Rehabil 81(1):80–88

    CAS  PubMed  Google Scholar 

  • Capaday C (2004) The integrated nature of motor cortical function. Neuroscientist 10:207–220

    Article  PubMed  Google Scholar 

  • Chen R, Corwell B et al (1998) Mechanisms of cortical reorganization in lower-limb amputees. J Neurosci 18:3443–3450

    CAS  PubMed  Google Scholar 

  • Chen R, Cohen LG et al (2002) Nervous system reorganization following injury. Neuroscience 111:761–773

    Article  CAS  PubMed  Google Scholar 

  • Cohen LG, Ziemann U et al (1999) Mechanisms, functional relevance and modulation of plasticity in the human central nervous system. Electroencephalogr Clin Neurophysiol Suppl 51:174–182

    CAS  PubMed  Google Scholar 

  • Cooke SF, Bliss TV (2006) Plasticity in the human central nervous system. Brain 129(Pt 7):1659–1673

    Article  CAS  PubMed  Google Scholar 

  • Cooper RA (1999) Engineering manual and electric powered wheelchairs. Crit Rev Biomed Eng 27:27–73

    CAS  PubMed  Google Scholar 

  • Cote JN, Raymond D et al (2005) Differences in multi-joint kinematic patterns of repetitive hammering in healthy, fatigued and shoulder-injured individuals. Clin Biomech 20:581–590

    Article  Google Scholar 

  • Crago PE, Memberg WD et al (1998) An elbow extension neuroprosthesis for individuals with tetraplegia. IEEE Trans Rehabil Eng 6(1):1–6

    Article  CAS  PubMed  Google Scholar 

  • Curt A, Van Hedel HJ et al (2008) Recovery from a spinal cord injury: significance of compensation, neural plasticity, and repair. J Neurotrauma 25(6):677–685

    Article  PubMed  Google Scholar 

  • Danziger Z, Fishbach A et al (2009) Learning algorithms for human-machine interfaces. IEEE Trans Biomed Eng 56(5):1502–1511

    Article  PubMed  Google Scholar 

  • Darian-Smith C (2009) Synaptic plasticity, neurogenesis, and functional recovery after spinal cord injury. Neuroscientist 15(2):149–165

    Article  PubMed  Google Scholar 

  • Dunlop SA (2008) Activity-dependent plasticity: implications for recovery after spinal cord injury. Trends Neurosci 31(8):410–418

    Article  CAS  PubMed  Google Scholar 

  • Fawcett JW (2009) Recovery from spinal cord injury: regeneration, plasticity and rehabilitation. Brain 132(Pt 6):1417–1418

    Article  PubMed  Google Scholar 

  • Fehr L, Langbein WE et al (2000) Adequacy of power wheelchair control interfaces for persons with severe disabilities: a clinical survey. J Rehabil Res Dev 37(3):353–360

    CAS  PubMed  Google Scholar 

  • Flanders M (1991) Temporal patterns of muscle activation for arm movements in three-dimensional space. J Neurosci 11:2680–2693

    CAS  PubMed  Google Scholar 

  • Fouad K, Krajacic A et al. (2010) Spinal cord injury and plasticity: opportunities and challenges. Brain Res Bull

  • Frost SB, Barbay S et al (2003) Reorganization of remote cortical regions after ischemic brain injury: a potential substrate for stroke recovery. J Neurophysiol 89(6):3205–3214

    Article  CAS  PubMed  Google Scholar 

  • Gandhi MV, Thompson BS (1992) Smart materials and structures. Chapman & Hall, London

    Google Scholar 

  • Georgopoulos AP, Schwartz AB et al (1986) Neuronal population coding of movement direction. Science 233:1357–1460

    Article  Google Scholar 

  • Grea H, Desmurget M et al (2000) Postural invariance in three-dimensional reaching and grasping movements. Exp Brain Res 134:155–162

    Article  CAS  PubMed  Google Scholar 

  • Grill JH, Peckham PH (1998) Functional neuromuscular stimulation for combined control of elbow extension and hand grasp in C5 and C6 quadriplegics. IEEE Trans Rehabil Eng 6(2):190–199

    Article  CAS  PubMed  Google Scholar 

  • Holdefer RN, Miller LE (2002) Primary motor cortical neurons encode functional muscle synergies. Exp Brain Res 146:233–243

    Article  CAS  PubMed  Google Scholar 

  • Hunt PC, Boninger ML et al (2004) Demographic and socioeconomic factors associated with disparity in wheelchair customizability among people with traumatic spinal cord injury. Arch Phys Med Rehabil 85(11):1859–1864

    Article  PubMed  Google Scholar 

  • Jolliffe IT (2002) Principal component analysis. Springer, New York

    Google Scholar 

  • Jurkiewicz MT, Mikulis DJ et al (2007) Sensorimotor cortical plasticity during recovery following spinal cord injury: a longitudinal fMRI study. Neurorehabil Neural Repair 21(6):527–538

    Article  PubMed  Google Scholar 

  • Kaye HS, Kang T et al (2000) Mobility device use in the United States. Disability statistics report. N. 14. Department of Education, National Institute on Disability and Rehabilitation Research, Washington

    Google Scholar 

  • Kessler GD, Hodges LF et al (1995) Evaluation of the CyberGlove(TM) as a whole hand input device. ACM Trans Comput Hum Interact 2:263–283

    Article  Google Scholar 

  • Kilgore KL, Peckham PH (1993a) Grasp synthesis for upper-extremity FNS. Part 1. Automated method for synthesising the stimulus map. Med Biol Eng Comput 31(6):607–614

    Article  CAS  PubMed  Google Scholar 

  • Kilgore KL, Peckham PH (1993b) Grasp synthesis for upper-extremity FNS. Part 2. Evaluation of the influence of electrode recruitment properties. Med Biol Eng Comput 31(6):615–622

    Article  CAS  PubMed  Google Scholar 

  • Kilgore KL, Peckham PH et al (1989) Synthesis of hand grasp using functional neuromuscular stimulation. IEEE Trans Biomed Eng 36(7):761–770

    Article  CAS  PubMed  Google Scholar 

  • Kilgore KL, Peckham PH et al (1997) An implanted upper-extremity neuroprosthesis. Follow-up of five patients. J Bone Joint Surg Am 79(4):533–541

    CAS  PubMed  Google Scholar 

  • Kilgore KL, Hoyen HA et al (2008) An implanted upper-extremity neuroprosthesis using myoelectric control. J Hand Surg Am 33(4):539–550

    Article  PubMed  Google Scholar 

  • Klein CA, Huang CH (1983) Review of pseudoinverse control for use with kinematically redundant manipulators. IEEE Trans Syst Man Cybern SMC-13:245–250

    Google Scholar 

  • Kuiken T (2006) Targeted reinnervation for improved prosthetic function. Phys Med Rehabil Clin N Am 17(1):1–13

    PubMed  Google Scholar 

  • Kuiken TA, Dumanian GA et al (2004) The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee. Prosthet Orthot Int 28(3):245–253

    CAS  PubMed  Google Scholar 

  • Kuiken TA, Miller LA et al (2007) Targeted reinnervation for enhanced prosthetic arm function in a woman with a proximal amputation: a case study. Lancet 369(9559):371–380

    Article  PubMed  Google Scholar 

  • Kuiken TA, Li G et al (2009) Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. JAMA 301(6):619–628

    Article  CAS  PubMed  Google Scholar 

  • Latash ML, Scholz JF et al (2001) Structure of motor variability in marginally redundant multifinger force production tasks. Exp Brain Res 141:153–165

    Article  CAS  PubMed  Google Scholar 

  • Latash ML, Scholz JP et al (2002) Motor control strategies revealed in the structure of motor variability. Exerc Sport Sci Rev 30:26–31

    Article  PubMed  Google Scholar 

  • Lee W (1984) Neuromotor synergies as a basis for coordinated intentional action. J Mot Behav 16:135–170

    CAS  PubMed  Google Scholar 

  • Mijovic B, Popovic MB et al (2008) Synergistic control of forearm based on accelerometer data and artificial neural networks. Braz J Med Biol Res 41(5):389–397

    Article  CAS  PubMed  Google Scholar 

  • Miller LJ, Peckham PH et al (1989) Elbow extension in the C5 quadriplegic using functional neuromuscular stimulation. IEEE Trans Biomed Eng 36(7):771–780

    Article  CAS  PubMed  Google Scholar 

  • Mosier KM, Scheidt RA et al (2005) Remapping hand movements in a novel geometrical environment. J Neurophysiol 94:4362–4372

    Article  PubMed  Google Scholar 

  • Mussa-Ivaldi FA, Bizzi E (2000) Motor learning through the combination of primitives. Phil Trans R Soc Lond B 355:1755–1769

    Article  CAS  Google Scholar 

  • Mussa-Ivaldi FA, Hogan N (1991) Integrable solutions of kinematic redundancy via impedance control. Int J Rob Res 10:481–491

    Article  Google Scholar 

  • Nudo RJ (2003a) Adaptive plasticity in motor cortex: implications for rehabilitation after brain injury. J Rehabil Med 41(Suppl):7–10

    Article  PubMed  Google Scholar 

  • Nudo RJ (2003b) Functional and structural plasticity in motor cortex: implications for stroke recovery. Phys Med Rehabil Clin N Am 14(1 Suppl):S57–S76

    PubMed  Google Scholar 

  • Nudo RJ (2006) Mechanisms for recovery of motor function following cortical damage. Curr Opin Neurobiol 16(6):638–644

    Article  CAS  PubMed  Google Scholar 

  • Nudo RJ, Friel KM (1999) Cortical plasticity after stroke: implications for rehabilitation. Rev Neurol (Paris) 155(9):713–717

    CAS  Google Scholar 

  • Nudo RJ, Wise BM et al (1996) Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science 272(5269):1791–1794

    Article  CAS  PubMed  Google Scholar 

  • O’Shaughnessy KD, Dumanian GA et al (2008) Targeted reinnervation to improve prosthesis control in transhumeral amputees. A report of three cases. J Bone Joint Surg Am 90(2):393–400

    Article  PubMed  Google Scholar 

  • Peckham PH, Kilgore KL et al (2002) An advanced neuroprosthesis for restoration of hand and upper arm control using an implantable controller. J Hand Surg Am 27(2):265–276

    Article  PubMed  Google Scholar 

  • Popovic MB (2003) Control of neural prostheses for grasping and reaching. Med Eng Phys 25(1):41–50

    Article  PubMed  Google Scholar 

  • Popovic M, Popovic D (2001) Cloning biological synergies improves control of elbow neuroprosthesis. IEEE Eng Med Biol Mag 20(1):74–81

    Article  CAS  PubMed  Google Scholar 

  • Sanes JN, Donoghue JP (2000) Plasticity and primary motor cortex. Annu Rev Neurosci 23:393–415

    Article  CAS  PubMed  Google Scholar 

  • Santello M, Flanders M et al (1998) Postural hand synergies for tool use. J Neurosci 18:10105–10115

    CAS  PubMed  Google Scholar 

  • Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36:1627–1639

    Article  CAS  Google Scholar 

  • Scholz JP, Schoner G (1999) The uncontrolled manifold concept: identifying control variables for a functional task. Exp Brain Res 126:289–306

    Article  CAS  PubMed  Google Scholar 

  • Sepulveda F (2009) An overview of BMIs. Int Rev Neurobiol 86:93–106

    Article  PubMed  Google Scholar 

  • Slotine JJ, Lohmiller W (2001) Modularity, evolution, and the binding problem: a view from stability theory. Neural Netw 14(2):137–145

    Article  CAS  PubMed  Google Scholar 

  • St-Onge N, Duval N et al (2004) Interjoint coordination in lower limbs in patients with a rupture of the anterior cruciate ligament of the knee joint. Knee Surg Sports Traumatol Arthrosc 12:203–216

    Article  CAS  PubMed  Google Scholar 

  • Teulings HL, Contreras-Vidal JL et al (1997) Parkinsonism reduces coordination of finger, wrist, and arm fine motor control. Exp Neurol 146:159–170

    Article  CAS  PubMed  Google Scholar 

  • Todorov E (2004) Optimality principles in sensorimotor control. Nat Neurosci 7(9):907–915

    Article  CAS  PubMed  Google Scholar 

  • Todorov E, Jordan MI (2002) Optimal feedback control as a theory of motor coordination. Nat Neurosci 5:1226–1235

    Article  CAS  PubMed  Google Scholar 

  • Ward NS (2004) Functional reorganization of the cerebral motor system after stroke. Curr Opin Neurol 17(6):725–730

    Article  PubMed  Google Scholar 

  • Winters JM, Wang Y (2003) Wearable sensors and telerehabilitation. IEEE Eng Med Biol Mag 22:56–65

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NINDS grants 1R21HD053608 and 1R01NS053581-01A2, by the Neilsen Foundation and by the Brinson Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maura Casadio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casadio, M., Pressman, A., Fishbach, A. et al. Functional reorganization of upper-body movement after spinal cord injury. Exp Brain Res 207, 233–247 (2010). https://doi.org/10.1007/s00221-010-2427-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-010-2427-8

Keywords

Navigation