Skip to main content
Log in

Locomotor and verbal distance judgments in action and vista space

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Judging distances is crucial when interacting with the environment. For short distances in action space (up to 30 m), both explicit verbal estimates and locomotor judgments are fairly accurate. For large distances, data have remained scarce. In two laboratory experiments, our observers judged distances to visual targets presented stereoscopically, either by giving a verbal estimate or by walking the distance to the target on a treadmill. While verbal judgments remained linearly scaled over the whole range of distances from 20 to 262 m, locomotor judgments fell short at distances above 100 m, indicating that observers overestimated the distance they had traveled and increasingly did so as a function of actual target distance. This pattern persisted when controlling for the potential confound of fatigue or reluctance to walk. We discuss different approaches to explain our findings and stress the importance of a differential use of distance cues. A model of leaky path integration showed a good fit with our locomotor data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Many participants in the verbal condition hinged their judgments on comparisons with earlier judgments of other distances, for instance with the practice trials or with situations in real life (50%; multiple responses were possible) and/or took other objects in the picture and the distances between these as points of references (35%). However, the majority of participants in the two locomotor conditions used step counting based on a mental egocentric judgment of distance (71%). Only some used reference points (26%), and some imagined themselves walking along the road (26%).

  2. The explained variance in the locomotor condition was  = .87 and  = .71 in the nonstop-locomotor condition when using the best-fit parameters found in Lappe et al.’s study (k = 0.98, α = .0076). When adjusting the parameter k and α to our data, the fit could be increased to  = .99 (k = 1.077, α = 0.003) in the locomotor condition and  = .93 (k = 0.636, α = .008) in the nonstop-locomotor condition (graphs are not shown).

References

  • Andre J, Rogers S (2006) Using verbal and blind-walking distance estimates to investigate the two visual systems hypothesis. Percept Psychophys 68(3):353–361

    Article  PubMed  Google Scholar 

  • Bee L (1991) Effect of magnification on distance estimation. Army personnel research establishment ministry of defence, Farnborough Hampshire

  • Berryhill ME, Olson IR (2009) The representation of object distance: evidence from neuroimaging and neuropsychology. Front Hum Neurosci 3:43. doi:10.3389/neuro.09.043.2009

    Article  PubMed  Google Scholar 

  • Buneo CA, Andersen RA (2006) The posterior parietal cortex: sensorimotor interface for the planning and online control of visually guided movements. Neuropsychologia 44(13):2594–2606. doi:10.1016/j.neuropsychologia.2005.10.011

    Article  PubMed  Google Scholar 

  • Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3(3):201–215. doi:10.1038/nrn755

    Article  PubMed  CAS  Google Scholar 

  • Creem-Regehr SH, Willemsen P, Gooch AA, Thompson WB (2005) The influence of restricted viewing conditions on egocentric distance perception: Implications for real and virtual indoor environments. Perception 34(2):191–204. doi:10.1068/p5144

    Article  PubMed  Google Scholar 

  • Daum SO, Hecht H (2009) Distance estimation in vista space. Atten Percept Psychophys 71(5):1127–1137. doi:10.3758/APP.71.5.1127

    Article  PubMed  Google Scholar 

  • Devallez D, Fontana F, Rocchesso D (2008) Linearizing Auditory Distance Estimates by Means of Virtual Acoustics. Acta Acustica United with Acustica 94(6):813–824

    Article  Google Scholar 

  • Durgin FH, Pelah A (1999) Visuomotor adaptation without vision? Exp Brain Res 127(1):12–18

    Article  PubMed  CAS  Google Scholar 

  • Durgin FH, Pelah A, Fox LF, Lewis J, Kane R, Walley KA (2005) Self-motion perception during locomotor recalibration: more than meets the eye. J Exp Psychol Hum Percept Perform 31(3):398–419. doi:10.1037/0096-1523.31.3.398

    Article  PubMed  Google Scholar 

  • Durgin FH, Hajnal A, Li Z, Tonge N, Stigliani A (2010) Palm boards are not action measures: an alternative to the two-systems theory of geographical slant perception. Acta Psychol (Amst) 134(2):182–197. doi:10.1016/j.actpsy.2010.01.009

    Article  Google Scholar 

  • Fine BJ, Kobrick JL (1983) Individual differences in distance estimation: comparison of judgments in the field with those from projected slides of the same scenes. Percept Mot Skills 57(1):3–14

    PubMed  CAS  Google Scholar 

  • Gilinsky AS (1951) Perceived size and distance in visual space. Psychol Rev 58(6):460–482

    Article  PubMed  CAS  Google Scholar 

  • Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15(1):20–25. doi:0166-2236(92)90344-8

    Article  PubMed  CAS  Google Scholar 

  • Grüsser O (1983) Multimodal structure of the extrapersonal space. In: Hein A, Jeannerod J (eds) Spatially oriented behavior. Springer, New York, pp 327–352

    Google Scholar 

  • Hecht H, van Doorn A, Koenderink JJ (1999) Compression of visual space in natural scenes and in their photographic counterparts. Percept Psychophys 61(7):1269–1286

    Article  PubMed  CAS  Google Scholar 

  • Hochberg Y (1988) A sharper bonferroni procedure for multiple tests of significance. Biometrika 75(4):800–802

    Article  Google Scholar 

  • Hommel B, Müsseler J, Aschersleben G, Prinz W (2001) The theory of event coding (TEC): a framework for perception and action planning. Behav Brain Sci 24(5):849–878

    Article  PubMed  CAS  Google Scholar 

  • Iachini T, Ruggiero G, Conson M, Trojano L (2009) Lateralization of egocentric and allocentric spatial processing after parietal brain lesions. Brain Cogn 69(3):514–520. doi:10.1016/j.bandc.2008.11.001

    Article  PubMed  Google Scholar 

  • Knapp JM, Loomis JM (2004) Limited field of view of head-mounted displays is not the cause of distance underestimation in virtual environments. Presence-Teleoperators and Virtual Environments 13(5):572–577

    Article  Google Scholar 

  • Kunz BR, Wouters L, Smith D, Thompson WB, Creem-Regehr SH (2009) Revisiting the effect of quality of graphics on distance judgments in virtual environments: a comparison of verbal reports and blind walking. Atten Percept Psychophys 71(6):1284–1293. doi:10.3758/APP.71.6.1284

    Article  PubMed  Google Scholar 

  • Lampton DR, McDonald DP, Singer M, Bliss JP (1995) Distance estimation in virtual environments. Proceedings of the Human Factors and Ergonomics Society 39th Annual Meeting, vols 1 and 2. pp 1268–1272

  • Lappe M, Jenkin M, Harris LR (2007) Travel distance estimation from visual motion by leaky path integration. Exp Brain Res 180(1):35–48. doi:10.1007/s00221-006-0835-6

    Article  PubMed  Google Scholar 

  • Loomis JM, Da Silva JA, Fujita N, Fukusima SS (1992) Visual space perception and visually directed action. J Exp Psychol Hum Percept Perform 18(4):906–921

    Article  PubMed  CAS  Google Scholar 

  • Milner A, Goodale M (1995) The visual brain in action. Oxford University Press, New York

    Google Scholar 

  • Neggers SF, Van der Lubbe RH, Ramsey NF, Postma A (2006) Interactions between ego- and allocentric neuronal representations of space. Neuroimage 31(1):320–331. doi:10.1016/j.neuroimage.2005.12.028

    Article  PubMed  CAS  Google Scholar 

  • Philbeck JW, Loomis JM (1997) Comparison of two indicators of perceived egocentric distance under full-cue and reduced-cue conditions. J Exp Psychol Hum Percept Perform 23(1):72–85

    Article  PubMed  CAS  Google Scholar 

  • Philbeck JW, Behrmann M, Black SE, Ebert P (2000) Intact spatial updating during locomotion after right posterior parietal lesions. Neuropsychologia 38(7):950–963. doi:S0028-3932(99)00156-6

    Article  PubMed  CAS  Google Scholar 

  • Philbeck JW, Behrmann M, Levy L, Potolicchio SJ, Caputy AJ (2004) Path integration deficits during linear locomotion after human medial temporal lobectomy. J Cogn Neurosci 16(4):510–520. doi:10.1162/089892904323057254

    Article  PubMed  Google Scholar 

  • Prinz W (1990) A common coding approach to perception and action. In: Neumann O, Prinz W (eds) Relationships between action and perception. Springer, Berlin, New York

    Google Scholar 

  • Proffitt DR (2009) Affordances matter in geographical slant perception. Psychon Bull Rev 16(5):970–972. doi:10.3758/PBR.16.5.970

    Article  PubMed  Google Scholar 

  • Proffitt DR, Bhalla M, Gossweiler R, Midgett J (1995) Perceiving geographical slant. Psychon Bull Rev 2:409–428

    Article  Google Scholar 

  • Rieser JJ, Ashmead DH, Talor CR, Youngquist GA (1990) Visual perception and the guidance of locomotion without vision to previously seen targets. Perception 19(5):675–689

    Article  PubMed  CAS  Google Scholar 

  • Rieser JJ, Pick HL Jr, Ashmead DH, Garing AE (1995) Calibration of human locomotion and models of perceptual-motor organization. J Exp Psychol Hum Percept Perform 21(3):480–497

    Article  PubMed  CAS  Google Scholar 

  • Sinai MJ, Ooi TL, He ZJ (1998) Terrain influences the accurate judgement of distance. Nature 395(6701):497–500

    Article  PubMed  CAS  Google Scholar 

  • Westwood DA, Chapman CD, Roy EA (2000) Pantomimed actions may be controlled by the ventral visual stream. Exp Brain Res 130(4):545–548

    Article  PubMed  CAS  Google Scholar 

  • Willemsen P, Gooch AA, Thompson WB, Creem-Regehr SH (2008) Effects of stereo viewing conditions on distance perception in virtual environments. Presence (Camb) 17(1):91–101

    Article  Google Scholar 

  • Willemsen P, Colton MB, Creem-Regehr SH, Thompson WB (2009) The effects of head-mounted display mechanical properties and field of view on distance judgments in virtual environments. ACM Trans Appl Percept 6(2):14. doi:810.1145/1498700.1498702

    Article  Google Scholar 

  • Witmer BG, Kline PB (1998) Judging perceived and traversed distance in virtual environments. Presence (Camb) 7(2):144–167

    Article  Google Scholar 

  • Wright RH (1995) Virtual reality psychophysics: forward and lateral distance, height and speed perceptions with a wide-angle helmet display. (ARI Technical Report 1025). U.S. Army Research Institute for the Behavioral and Social Sciences, Alexandria, VA

  • Zahorik P, Brungart DS, Bronkhorst AW (2005) Auditory distance perception in humans: a summary of past and present research. Acta Acustica 91(3):409–420

    Google Scholar 

Download references

Acknowledgments

Author H. H. was supported by a grant of the German Science Foundation (Deutsche Forschungsgemeinschaft HE 2122/6-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna Bergmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergmann, J., Krauß, E., Münch, A. et al. Locomotor and verbal distance judgments in action and vista space. Exp Brain Res 210, 13–23 (2011). https://doi.org/10.1007/s00221-011-2597-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-011-2597-z

Keywords

Navigation