Skip to main content
Log in

The bliss (not the problem) of motor abundance (not redundancy)

  • Mini-Review
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Motor control is an area of natural science exploring how the nervous system interacts with other body parts and the environment to produce purposeful, coordinated actions. A central problem of motor control—the problem of motor redundancy—was formulated by Nikolai Bernstein as the problem of elimination of redundant degrees-of-freedom. Traditionally, this problem has been addressed using optimization methods based on a variety of cost functions. This review draws attention to a body of recent findings suggesting that the problem has been formulated incorrectly. An alternative view has been suggested as the principle of abundance, which considers the apparently redundant degrees-of-freedom as useful and even vital for many aspects of motor behavior. Over the past 10 years, dozens of publications have provided support for this view based on the ideas of synergic control, computational apparatus of the uncontrolled manifold hypothesis, and the equilibrium-point (referent configuration) hypothesis. In particular, large amounts of “good variance”—variance in the space of elements that has no effect on the overall performance—have been documented across a variety of natural actions. “Good variance” helps an abundant system to deal with secondary tasks and unexpected perturbations; its amount shows adaptive modulation across a variety of conditions. These data support the view that there is no problem of motor redundancy; there is bliss of motor abundance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Bernstein NA (1930) A new method of mirror cyclographie and its application towards the study of labor movements during work on a workbench. Hyg, Saf Pathol Labor 5:3–9, and 6:3–11 (in Russian)

  • Bernstein NA (1967) The co-ordination and regulation of movements. Pergamon Press, Oxford

    Google Scholar 

  • Bottasso CL, Prilutsky BI, Croce A, Imberti E, Sartirana S (2006) A numerical procedure for inferring from experimental data the optimization cost functions using a multibody model of the neuro-musculoskeletal system. Multibody Syst Dyn 16:123–154

    Article  Google Scholar 

  • Cruse H, Bruwer M (1987) The human arm as a redundant manipulator: the control of path and joint angles. Biol Cybern 57:137–144

    Article  PubMed  CAS  Google Scholar 

  • de Freitas SM, Scholz JP, Stehman AJ (2007) Effect of motor planning on use of motor abundance. Neurosci Lett 417:66–71

    Article  PubMed  Google Scholar 

  • Diedrichsen J, Shadmehr R, Ivry RB (2010) The coordination of movement: optimal feedback control and beyond. Trends Cogn Sci 14:31–39

    Article  PubMed  Google Scholar 

  • Feldman AG (1966) Functional tuning of nervous system with control of movement or maintenance of a steady posture. II. Controllable parameters of the muscles. Biophysics 11:565–578

    Google Scholar 

  • Feldman AG (1986) Once more on the equilibrium-point hypothesis (λ-model) for motor control. J Mot Behav 18:17–54

    PubMed  CAS  Google Scholar 

  • Feldman AG (2009) Origin and advances of the equilibrium-point hypothesis. Adv Exp Med Biol 629:637–643

    Article  PubMed  Google Scholar 

  • Feldman AG (2011) Space and time in the context of equilibrium-point theory. Wiley Interdiscip Rev: Cogn Sci 2:287–304

    Article  Google Scholar 

  • Gelfand IM, Latash ML (1998) On the problem of adequate language in movement science. Mot Control 2:306–313

    CAS  Google Scholar 

  • Gorniak SL, Feldman AG, Latash ML (2009) Joint coordination during bimanual transport of real and imaginary objects. Neurosci Lett 456:80–84

    Article  PubMed  CAS  Google Scholar 

  • Henneman E, Somjen G, Carpenter DO (1965) Excitability and inhibitibility of motoneurones of different sizes. J Neurophysiol 28:599–620

    PubMed  CAS  Google Scholar 

  • Hinder MR, Milner TE (2003) The case for an internal dynamics model versus equilibrium point control in human movement. J Physiol 549:953–963

    Article  PubMed  CAS  Google Scholar 

  • Hommel B, Müsseler J, Aschersleben G, Prinz W (2001) The theory of event coding (TEC): a framework for perception and action planning. Behav Brain Sci 24:849–878

    Article  PubMed  CAS  Google Scholar 

  • Hu X, Newell KM (2011) Modeling constraints to redundancy in bimanual force coordination. J Neurophysiol 105:2169–2180

    Article  PubMed  Google Scholar 

  • Jaric S, Latash ML (1999) Learning a pointing task with a kinematically redundant limb: emerging synergies and patterns of final position variability. Hum Move Sci 18:819–838

    Article  Google Scholar 

  • Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opinions Neurobiol 9:718–727

    Article  CAS  Google Scholar 

  • Kugler PN, Turvey MT (1987) Information, natural law, and the self-assembly of rhythmic movement. Erlbaum, Hillsdale, NJ

    Google Scholar 

  • Latash ML (2000) There is no motor redundancy in human movements. There is motor abundance. Mot Control 4:257–259

    Google Scholar 

  • Latash ML (2008) Synergy. Oxford University Press, NY

    Book  Google Scholar 

  • Latash ML (2010) Motor synergies and the equilibrium-point hypothesis. Mot Control 14:294–322

    Google Scholar 

  • Latash ML, Kang N, Patterson D (2002) Finger coordination in persons with Down syndrome: atypical patterns of coordination and the effects of practice. Exp Brain Res 146:345–355

    Article  PubMed  Google Scholar 

  • Latash ML, Scholz JP, Schöner G (2007) Toward a new theory of motor synergies. Mot Control 11:276–308

    Google Scholar 

  • Latash ML, Sun Y, Latash EM, Mikaelian IL (2011) Speed-difficulty trade-off in speech: Chinese vs. English. Exp Brain Res 211:193–205

    Article  PubMed  Google Scholar 

  • Martin V, Scholz JP, Schöner G (2009) Redundancy, self-motion, and motor control. Neural Comput 21:1371–1414

    Article  PubMed  CAS  Google Scholar 

  • Mattos D, Latash ML, Park E, Kuhl J, Scholz JP (2011) Unpredictable elbow joint perturbation during reaching results in multijoint motor equivalence. J Neurophysiol 106:1424–1436

    Article  PubMed  CAS  Google Scholar 

  • Maurer C, Mergner T, Peterka RJ (2006) Multisensory control of human upright stance. Exp Brain Res 171:231–250

    Article  PubMed  CAS  Google Scholar 

  • Nelson W (1983) Physical principles for economies of skilled movements. Biol Cybern 46:135–147

    Article  PubMed  CAS  Google Scholar 

  • Park J, Zatsiorsky VM, Latash ML (2011a) Finger coordination under artificial changes in finger strength feedback: a study using analytical inverse optimization. J Mot Behav 43:229–235

    Article  PubMed  Google Scholar 

  • Park J, Sun Y, Zatsiorsky VM, Latash ML (2011b) Age-related changes in optimality and motor variability: an example of multi-finger redundant tasks. Exp Brain Res 212:1–18

    Article  PubMed  Google Scholar 

  • Prilutsky BI, Zatsiorsky VM (2002) Optimization-based models of muscle coordination. Exerc Sport Sci Rev 30:32–38

    Article  PubMed  Google Scholar 

  • Rosenbaum DA, Meulenbroek RJ, Vaughan J, Jansen C (2001) Posture-based motion planning: applications to grasping. Psychol Rev 108:709–734

    Article  PubMed  CAS  Google Scholar 

  • Scholz JP, Schöner G (1999) The uncontrolled manifold concept: identifying control variables for a functional task. Exp Brain Res 126:289–306

    Article  PubMed  CAS  Google Scholar 

  • Shadmehr R, Wise SP (2005) The computational neurobiology of reaching and pointing. MIT Press, Cambridge, MA

    Google Scholar 

  • Singh T, SKM V, Zatsiorsky VM, Latash ML (2010) Fatigue and motor redundancy: adaptive increase in force variance in multi-finger tasks. J Neurophysiol 103:2990–3000

    Article  PubMed  Google Scholar 

  • Stepp N, Turvey MT (2010) On strong anticipation. Cogn Syst Res 11:148–164

    Article  PubMed  Google Scholar 

  • Terekhov AV, Pesin YB, Niu X, Latash ML, Zatsiorsky VM (2010) An analytical approach to the problem of inverse optimization: an application to human prehension. J Math Biol 61:423–453

    Article  PubMed  Google Scholar 

  • Todorov E, Jordan MI (2002) Optimal feedback control as a theory of motor coordination. Nat Neurosci 5:1226–1235

    Article  PubMed  CAS  Google Scholar 

  • Uno Y, Kawato M, Suzuki R (1989) Formation and control of optimal trajectory in human multijoint arm movement. Biol Cybern 61:89–101

    Article  PubMed  CAS  Google Scholar 

  • Yang JF, Scholz JP (2005) Learning a throwing task is associated with differential changes in the use of motor abundance. Exp Brain Res 163:137–158

    Article  PubMed  Google Scholar 

  • Yang JF, Scholz JP, Latash ML (2007) The role of kinematic redundancy in adaptation of reaching. Exp Brain Res 176:54–69

    Article  PubMed  Google Scholar 

  • Zhang W, Scholz JP, Zatsiorsky VM, Latash ML (2008) What do synergies do? Effects of secondary constraints on multi-digit synergies in accurate force-production tasks. J Neurophysiol 99:500–513

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Preparation of this paper was in part supported by NIH grant NS-035032.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark L. Latash.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Latash, M.L. The bliss (not the problem) of motor abundance (not redundancy). Exp Brain Res 217, 1–5 (2012). https://doi.org/10.1007/s00221-012-3000-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-012-3000-4

Keywords

Navigation