Skip to main content
Log in

Role of pattern, regularity, and silent intervals in auditory stream segregation based on inter-aural time differences

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Tone triplets separated by a pause (ABA_) are a popular tone-repetition pattern to study auditory stream segregation. Such triplets produce a galloping rhythm when integrated, but isochronous rhythms when segregated. Other patterns lacking a pause may produce less-prominent rhythmic differences but stronger streaming. Here, we evaluated whether this difference is readily explained by the presence of the pause and potentially associated with the reduction of adaptation, or whether there is contribution of tone pattern per se. Sequences with repetitive ABA_ and ABAA patterns were presented in magnetoencephalography. A and B tones were separated by differences in inter-aural time differences (ΔITD). Results showed that the stronger streaming of ABAA was associated with a more prominent release from the adaptation of the P1m in auditory cortex. We further compared behavioral streaming responses for patterns with and without pauses, and varied the position of the pause and pattern regularity. Results showed a major effect of the pauses’ presence, but no prominent effects of tone pattern or pattern regularity. These results make a case for the existence of an early, primitive streaming mechanism that does not require an analysis of the tone pattern at later stages suggested by predictive-coding models of auditory streaming. The results are better explained by the simpler population-separation model and stress the previously observed role of neural adaptation for streaming perception.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andreou LV, Kashino M, Chait M (2011) The role of temporal regularity in auditory segregation. Hear Res 280:228–235

    Article  PubMed  Google Scholar 

  • Anstis S, Saida S (1985) Adaptation to auditory streaming of frequency-modulated tones. J Exp Psychol Hum Percept Perform 11:257–271

    Article  Google Scholar 

  • Bee MA, Klump GM (2004) Primitive auditory stream segregation: a neurophysiological study in the songbird forebrain. J Neurophysiol 92:1088–1104

    Article  PubMed  Google Scholar 

  • Bendixen A, Denham SL, Gyimesi K, Winkler I (2010) Regular patterns stabilize auditory streams. J Acoust Soc Am 128:3658–3666. doi:10.1121/1.3500695

    Article  PubMed  Google Scholar 

  • Boehnke SE, Phillips DP (2005) The relation between auditory temporal interval processing and sequential stream segregation examined with stimulus laterality differences. Percept Psychophys 67:1088–1101

    Article  PubMed  Google Scholar 

  • Bregman AS (1978) Auditory streaming is cumulative. J Exp Psychol Hum Percept Perform 4:380–387

    Article  PubMed  CAS  Google Scholar 

  • Bregman AS (1990) Auditory scene analysis. MIT Press, Cambridge

    Google Scholar 

  • Bregman AS, Ahad PA, Crum PA, O’Reilly J (2000) Effects of time intervals and tone durations on auditory stream segregation. Percept Psychophys 62:626–636

    Article  PubMed  CAS  Google Scholar 

  • Brosch M, Schreiner CE (1997) Time course of forward masking tuning curves in cat primary auditory cortex. J Neurophysiol 77:923–943

    PubMed  CAS  Google Scholar 

  • Denham SL, Winkler I (2006) The role of predictive models in the formation of auditory streams. J Physiol Paris 100:154–170

    Article  PubMed  CAS  Google Scholar 

  • Dykstra AR, Halgren E, Thesen T et al (2011) Widespread brain areas engaged during a classical auditory streaming task revealed by intracranial EEG. Front Hum Neurosci 5:74. doi:10.3389/fnhum.2011.00074

    Article  PubMed  Google Scholar 

  • Elhilali M, Ma L, Micheyl C, Oxenham AJ, Shamma SA (2009) Temporal coherence in the perceptual organization and cortical representation of auditory scenes. Neuron 61:317–329

    Article  PubMed  CAS  Google Scholar 

  • Fishman YI, Reser DH, Arezzo JC, Steinschneider M (2001) Neural correlates of auditory stream segregation in primary auditory cortex of the awake monkey. Hear Res 151:167–187

    Article  PubMed  CAS  Google Scholar 

  • Fishman YI, Arezzo JC, Steinschneider M (2004) Auditory stream segregation in monkey auditory cortex: effects of frequency separation, presentation rate, and tone duration. J Acoust Soc Am 116:1656–1670

    Article  PubMed  Google Scholar 

  • Fishman YI, Micheyl C, Steinschneider M (2012) Neural mechanisms of rhythmic masking release in monkey primary auditory cortex: implications for models of auditory scene analysis. J Neurophysiol 107:2366–2382

    Google Scholar 

  • Grimault N, Bacon SP, Micheyl C (2002) Auditory stream segregation on the basis of amplitude-modulation rate. J Acoust Soc Am 111:1340–1348

    Article  PubMed  Google Scholar 

  • Gutschalk A, Micheyl C, Melcher JR, Rupp A, Scherg M, Oxenham AJ (2005) Neuromagnetic correlates of streaming in human auditory cortex. J Neurosci 25:5382–5388

    Article  PubMed  CAS  Google Scholar 

  • Gutschalk A, Oxenham AJ, Micheyl C, Wilson EC, Melcher JR (2007) Human cortical activity during streaming without spectral cues suggests a general neural substrate for auditory stream segregation. J Neurosci 27:13074–13081

    Article  PubMed  CAS  Google Scholar 

  • Handel S, Weaver MS, Lawson G (1983) Effect of rhythmic grouping on stream segregation. J Exp Psychol Hum Percept Perform 9:637–651

    Article  PubMed  CAS  Google Scholar 

  • Hartley DE, Dahmen JC, King AJ, Schnupp JW (2011) Binaural sensitivity changes between cortical on and off responses. J Neurophysiol 106:30–43

    Article  PubMed  Google Scholar 

  • Hartmann WM, Johnson D (1991) Stream segregation and peripheral channeling. Music Percept 9:155–184

    Article  Google Scholar 

  • Hill KT, Bishop CW, Miller LM (2012) Auditory grouping mechanisms reflect a sound’s relative position in a sequence. Front Hum Neurosci 6:158. doi:10.3389/fnhum.2012.00158

    Article  PubMed  Google Scholar 

  • Jones MR, Kidd G, Wetzel R (1981) Evidence for rhythmic attention. J Exp Psychol Hum Percept Perform 7:1059–1073

    Article  PubMed  CAS  Google Scholar 

  • McAlpine D, Jiang D, Palmer AR (2001) A neural code for low-frequency sound localization in mammals. Nat Neurosci 4:396–401. doi:10.1038/86049

    Article  PubMed  CAS  Google Scholar 

  • Micheyl C, Tian B, Carlyon RP, Rauschecker JP (2005) Perceptual organization of tone sequences in the auditory cortex of awake macaques. Neuron 48:139–148

    Article  PubMed  CAS  Google Scholar 

  • Micheyl C, Carlyon RP, Gutschalk A, Melcher JR, Oxenham AJ, Rauschecker JP, Tian B, Wilson EC (2007) The role of auditory cortex in the formation of auditory streams. Hear Res 229:116–131

    Article  PubMed  Google Scholar 

  • Middlebrooks JC, Clock AE, Xu L, Green DM (1994) A panoramic code for sound location by cortical neurons. Science 264:842–844

    Article  PubMed  CAS  Google Scholar 

  • Miller GA, Heise GA (1950) The trill threshold. J Acoust Soc Am 22:637–638

    Article  Google Scholar 

  • Moore BCJ, Gockel H (2002) Factors influencing sequential stream segregation. Acta Acustica United with Acustica 88:320–333

    Google Scholar 

  • Näätänen R, Picton T (1987) The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology 24:375–425

    Article  PubMed  Google Scholar 

  • Pressnitzer D, Sayles M, Micheyl C, Winter IM (2008) Perceptual organization of sound begins in the auditory periphery. Curr Biol 18:1124–1128

    Article  PubMed  CAS  Google Scholar 

  • Rogers WL, Bregman AS (1993) An experimental evaluation of three theories of auditory stream segregation. Percept Psychophys 53:179–189

    Article  PubMed  CAS  Google Scholar 

  • Schadwinkel S, Gutschalk A (2010a) Activity associated with stream segregation in human auditory cortex is similar for spatial and pitch cues. Cereb Cortex 20:2863–2873

    Article  PubMed  Google Scholar 

  • Schadwinkel S, Gutschalk A (2010b) Functional dissociation of transient and sustained fMRI BOLD components in human auditory cortex revealed with a streaming paradigm based on interaural time differences. Eur J Neurosci 32:1970–1978. doi:10.1111/j.1460-9568.2010.07459.x

    Article  PubMed  Google Scholar 

  • Schadwinkel S, Gutschalk A (2011) Transient bold activity locked to perceptual reversals of auditory streaming in human auditory cortex and inferior colliculus. J Neurophysiol 105:1977–1983

    Article  PubMed  Google Scholar 

  • Scherg M (1990) Fundamentals of dipole source analysis. In: Grandori F, Hoke M, Romani GL (eds) Auditory evoked magnetic fields and electric potentials. Karger, Basel, pp 40–69

  • Snyder JS, Weintraub DM (2011) Pattern specificity in the effect of prior Deltaf on auditory stream segregation. J Exp Psychol Hum Percept Perform 37:1649–1656

    Article  PubMed  Google Scholar 

  • Snyder JS, Alain C, Picton TW (2006) Effects of attention on neuroelectric correlates of auditory stream segregation. J Cogn Neurosci 18:1–13

    Article  PubMed  Google Scholar 

  • Snyder JS, Gregg MK, Weintraub DM, Alain C (2012) Attention, awareness, and the perception of auditory scenes. Front Psychol 3:15

    Article  PubMed  Google Scholar 

  • Stainsby TH, Fullgrabe C, Flanagan HJ, Waldman SK, Moore BC (2011) Sequential streaming due to manipulation of interaural time differences. J Acoust Soc Am 130:904–914. doi:10.1121/1.3605540

    Article  PubMed  Google Scholar 

  • Stecker GC, Harrington IA, Middlebrooks JC (2005) Location coding by opponent neural populations in the auditory cortex. PLoS Biol 3:e78

    Article  PubMed  Google Scholar 

  • Van Noorden LPAS (1975) Temporal coherence in the perception of tone sequences. University of Technology, Eindhoven

    Google Scholar 

  • Vliegen J, Oxenham AJ (1999) Sequential stream segregation in the absence of spectral cues. J Acoust Soc Am 105:339–346

    Article  PubMed  CAS  Google Scholar 

  • Winkler I, Denham SL, Nelken I (2009) Modeling the auditory scene: predictive regularity representations and perceptual objects. Trends Cogn Sci 13:532–540. doi:10.1016/J.Tics.2009.09.003

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Research supported primarily by Deutsche Forschungsgemeinschaft (DFG, grant GU593/3-2) and additionally by Bundesministerium für Bildung und Forschung (BMBF, grant 01EV0712).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Gutschalk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carl, D., Gutschalk, A. Role of pattern, regularity, and silent intervals in auditory stream segregation based on inter-aural time differences. Exp Brain Res 224, 557–570 (2013). https://doi.org/10.1007/s00221-012-3333-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-012-3333-z

Keywords

Navigation